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Abstract

Interacting particle systems in the KPZ universality class on a ring of size L with O(L) number of

particles are expected to change from KPZ dynamics to equilibrium dynamics at the so-called relaxation

time scale t = O(L3/2). In particular the system size is expected to have little effect to the particle

fluctuations in the sub-relaxation time scale 1 � t � L3/2. We prove that this is indeed the case for

the totally asymmetric simple exclusion process (TASEP) with two types of initial conditions. For flat

initial condition, we show that the particle fluctuations are given by the Airy1 process as in the infinite

TASEP with flat initial condition. On the other hand, the TASEP on a ring with step initial condition

is equivalent to the periodic TASEP with a certain shock initial condition. We compute the fluctuations

explicitly both away from and near the shocks for the infinite TASEP with same initial condition, and

then show that the periodic TASEP has same fluctuations in the sub-relaxation time scale.

1 Introduction and results

Consider the fluctuations of the particle locations of a one-dimensional interacting particle system in the KPZ

class (such as asymmetric simple exclusion process) on a ring of size L with N = O(L) number of particles.

The system behaves for a while like an infinite system, but eventually the dynamics will be influenced by

the system size L. Since the spatial correlations of the infinite system are expected to be of order t2/3, the

fluctuations of all particles become correlated if t2/3 = O(L). This time scale, t = O(L3/2), is referred as the

relaxation time scale [17, 14, 21, 11, 16, 23]. Recently the one-point limit law in this relaxation time scale

was obtained in [24, 4] for the totally asymmetric simple exclusion process (TASEP) on a ring. It was shown

that the height fluctuations are still of order t1/3 as in the KPZ scaling but the limiting distributions are

something new, different from the Tracy-Widom distributions. The goal of this paper is to study the effect

of the system size in the sub-relaxation time scale 1 � t � L3/2. We focus on the TASEP on a ring with

flat and step initial conditions and the results will complement the papers [24, 4].

The TASEP on a ring is equivalent to the periodic TASEP, and we present our results in this model.

In the periodic TASEP of period L with N particles, the particles are on the integers Z and satisfy the

periodicity xk(t) = xk+N (t) +L for all k ∈ Z and t ≥ 0. In the usual TASEP, the particles have independent

clocks of exponential waiting time with parameter 1. A particle moves to its right neighboring site if its

clock rings and the right neighboring site is empty. For the periodic TASEP, the clocks corresponding to the

particles at the sites of L distance apart are identical. Hence if a particle at site i moves, then the particles

at sites i+nL, n ∈ Z, all move. Any N consecutively-indexed particles in the periodic TASEP then describe

the TASEP on a ring with the additional information of the winding numbers around the ring. An initial

condition for the TASEP on a ring introduces a periodic initial condition for the periodic TASEP. The flat
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initial condition on a ring translates to the flat initial condition for the periodic TASEP: for a fixed positive

integer d ≥ 2,

xj(0) = jd, j ∈ Z. (1.1)

(We label the particles left to right, and they move from left to right.) However, the step initial condition

on a ring translates to the following initial condition for the periodic TASEP:

xj+kN (0) = −N + j + kL, j = 1, 2, · · · , N, k ∈ Z. (1.2)

See the first picture in Figure 1. Note that this is a shock initial condition. For both initial conditions, we

keep the average particle density ρ as a constant and take t→∞ and L = [ρ−1N ]→∞ simultaneously. We

compare the periodic TASEP with the usual TASEP on Z, which we call infinite TASEP, with same initial

condition. The main result is that as long as 1� t� L3/2, the particle fluctuations of the periodic TASEP

are same as those of the infinite TASEP. Hence the system size has little effect in the sub-relaxation time

scale.

1.1 Flat initial condition

For the infinite TASEP with flat initial condition, the particle fluctuations converge to the Airy1 process

A1(u) [26, 9]. The marginals of A1(u) are distributed as the GOE Tracy-Widom distribution [28]. We show

that the periodic TASEP with flat initial condition has the same fluctuations if 1� t� L3/2.

Let the average density ρ of particles be a fixed constant satisfying

ρ ∈ {d−1 ; d = 2, 3, 4, · · · }. (1.3)

Define the flat initial condition as

xj(0) = jρ−1, j = 1, 2, · · · , N (1.4)

for the TASEP on a ring (where the ring is identified with the set {1, 2, · · · , L} with L = Nρ−1). Then the

corresponding periodic TASEP satisfies the flat initial condition,

xj(0) = jρ−1, j ∈ Z. (1.5)

Theorem 1.1. (flat initial condition) Fix ρ satisfying (1.3) and consider the periodic TASEP of period

L = ρ−1N with N particles. Assume the flat initial condition (1.5). Let t = tN be a sequence of times

satisfying the following two conditions: (1) tN ≤ CN3/2−ε for fixed positive constants C and ε, and (2)

limN→∞ tN =∞. Then setting

κ1 := 25/3ρ4/3(1− ρ)1/3, σ1 := 21/3ρ−1/3(1− ρ)2/3, (1.6)

we have
x

[κ1ut
2/3
N ]

(tN )− x
[κ1ut

2/3
N ]

(0)− (1− ρ)tN

−σ1t
1/3
N

−→ A1(u) (1.7)

for u ∈ R in the sense of convergence of finite dimensional distributions as N →∞.

Compare the above result with the infinite TASEP with the same initial condition (1.5). In this case, the

result (1.7) holds as t → ∞ in an arbitrary way [26, 9].1 The sub-relaxation condition (1) tN ≤ CN3/2−ε

1The paper [9] only states the result for ρ = 1/2, but the more general case ρ = 1/d, d = 2, 3, 4, · · · , is similar. See [8] for a

discrete version. We note that the more general case ρ = p/q for integer p and q, however, is still open for both infinite TASEP

and TASEP on a ring.
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Figure 1: The evolution of density profile for periodic step initial condition when ρ = 1/3. The four figures correspond to the

cases when t/L = 0, t/L = 4, O(1) � t/L � L1/2 (with the choice of t/L = 93 and L = 106), and t = O(L3/2) (with the

choice of t = L3/2 and L = 106).

is not needed. (The infinite TASEP does not even depend N and L individually; it depends only on the

ratio ρ = N/L.) On the other hand, the one-point distribution of the periodic TASEP is not the GOE

Tracy-Widom distribution when t = O(L3/2) [24, 4], and when t � L3/2, we expect Gaussian fluctuations.

Hence for the flat initial condition, the periodic TASEP has same fluctuations as the infinite TASEP only

in the sub-relaxation time scale 1� t� L3/2.

1.2 Periodic step initial condition

Define the step initial condition for the TASEP on a ring (where the ring is identified with {−N + 1,−N +

2, · · · ,−N + L}) as

xj(0) = −N + j, j = 1, 2, · · · , N. (1.8)

Then the corresponding periodic TASEP satisfies

xj+kN (0) = −N + j + kL, j = 1, 2, · · · , N, k ∈ Z. (1.9)

We call this periodic step initial condition. See the first picture in Figure 1. Fix ρ ∈ (0, 1). We assume that

L = [ρ−1N ]. Hence ρ is the average density of particles. For simplicity we assume that 0 < ρ ≤ 1/2. See

Remark 1.2 for the case when 1/2 < ρ < 1.

For comparison, we consider the infinite TASEP with same periodic step initial condition. Note that in

this case the system depends on L and ρ, unlike the flat initial condition which depends only on ρ. The

interesting feature about the periodic step initial condition is that it generates (infinitely many, spatially

periodic) shocks. For the flat initial condition, the limit theorem for the infinite TASEP was previously

established, but for the periodic step initial condition, we first need to establish the limit theorem for infinite

TASEP. We compute the particle fluctuations explicitly when 1� t� L3/2 both away from the shocks and

near the shocks, and then show that the periodic TASEP have the same fluctuations.
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We state our result for the particles whose labels are close to [αN ], where α ∈ R is a fixed constant.

By periodicity of the initial condition, we may assume 0 < α ≤ 1. The shocks, once generated, travel with

average speed 1 − 2ρ (see (A.5) below). On the other hand, the speed of a given particle changes with

time and asymptotically becomes 1 − ρ. Since the shocks and the particle have different speeds, a particle

meets with a shock once every O(N) time interval. By solving the Burger’s equation, one can check that

(see Appendix A below) the [αN ]-th particle meets with a shock at times s1N, s2N, · · · on average, where

sj = sj(α) are defined by

sj = sj(α) :=
(
√
j − α+ 1 +

√
j − α)2

4ρ2
, j ≥ 1, (1.10)

for 0 < α ≤ 1. Now define the sequence of (scaled) shock intervals for particle [αN ]:

Sj = (sj , sj+1), j = 0, 1, 2, · · · , (1.11)

where we set

s0 = s0(α) := 1− α. (1.12)

Here s0N is not a shock time for particle [αN ]. Instead it is the average time the particle moves for the first

time; due to the initial condition, it takes certain amount of time for a given particle to be able to move.

We introduce the notation I(ε) = {x : x ∈ I, dist (x, ∂I) ≥ ε} for interval I and nonnegative number ε.

Note that if I = (a, b), then I(ε) = [a + ε, b − ε] for 0 < ε < (b − a)/2, and I(ε) = ∅ for ε > (b − a)/2. We

denote by A2(u) the Airy2 process [22] whose marginals have the GUE Tracy-Widom distribution [27].

As in the flat case, we state the results for a sequence of times tN . We introduce another sequence of

parameters jN . The parameter jN measures the number of encounters with shocks by time tN . Since we

assume sub-relaxation time scale tN ≤ O(N3/2−ε), the parameter jN satisfies jN ≤ O(N1/2−ε). We state

the result for two cases separately; when the particles are away from shocks and when they are near a shock.

These two cases correspond to the cases when the rescaled time parameter TN = tN
N satisfies TN ∈ S(ε′)

jN
and

when TN = sjN , respectively. Note that jN/TN = O(1).

1.2.1 Away from shocks

We state the first theorem only for 0 < α < 1. The case α = 1 is discussed in Remark 1.1.

Theorem 1.2. (Periodic step initial condition 1. Away from shocks)

(i) Let ρ and α be fixed constants satisfying 0 < ρ ≤ 1/2 and 0 < α < 1. Consider the infinite TASEP

with the periodic step initial condition (1.9) with L = [ρ−1N ]. For fixed constants ε > 0 and C > 0,

let jN be an integer sequence satisfying 0 ≤ jN < CN1/2−ε for all N . Fix ε′ > 0 such that S(ε′)
jN
6= ∅

for all N . Set

µ = µ(N) :=

√
jN − α+ 1

TN
(1.13)

and

κ2 = κ2(N) := 2µ4/3(1− µ)1/3, σ2 = σ2(N) := µ−1/3(1− µ)2/3. (1.14)

Defined the scaled particle location as

yN (u) := x[
αN+κ2ut

2/3
N

](tN )− (1− 2µ)tN − ρ−1jNN. (1.15)

Then for every time sequence tN = TNN satisfying TN ∈ S(ε′)
jN

, we have

yN (u)− 2µ1/3(1− µ)1/3ut
2/3
N

−σ2t
1/3
N

−→ A2(u)− u2 (1.16)
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for u ∈ R in the sense of convergence of finite dimensional distribution as N →∞.

(ii) The same result holds for the periodic TASEP of period L = [ρ−1N ] with N particles.

As mentioned before, due to the periodic step initial condition, the [αN ]-th particle only starts to move

after s0N time on average. This is the reason that we restrict that tN ≥ s0N : see the condition that jN ≥ 0.

For the next theorem about the fluctuations near a shock, we assume that jN ≥ 1 so that tN ≥ s1N . This

is because s1N is the average of the first time for the [αN ]-th particle to meet a shock.

Remark 1.1. We now discuss the case of when α = 1. This case is concerned with the particles labeled

N +O(1). At time 0, the particle labeled N has the particle N −1 to its immediate left but the particle N +1

is in O(N) distance to its right. The distance between particle N and particle N + 1 becomes O(1) at around

time s1(1)N , the first shock time for α = 1. We can show that if we add the assumption that jN ≥ 1 for all

large enough N , then the theorem holds for α = 1.

1.2.2 Near shocks

Before we discuss the next theorem, let us consider the density profile. It is same for both infinite TASEP

and periodic TASEP. A computation of the Burger’s equation shows that the shocks are generated after

time t ≈ 1
4ρL. The density profile at a shock has jump discontinuity of size 1

2Lt
−1. See Appendix A for the

computation and Figure 1 for an illustration. When t ≤ O(L) the discontinuity is order O(1). On the other

hand, when t� L, the discontinuity converges to zero and the density profile is asymptotically continuous.

Indeed the density profile converges to the constant function with value ρ. However, in the sub-relaxation

time scale t ≤ O(L3/2−ε), the discontinuity is at least O(Lε−1/2). The next theorem shows that as long as

the discontinuity is at least this much, the fluctuations near a shock are same as the O(1) discontinuity, and,

furthermore, the periodic TASEP has the same fluctuations as the infinite TASEP.

The part (c) of the next theorem is about the fluctuations at a shock. Recently, Ferrari and Nejjar

[15] studied them for infinite TASEP. They obtained a simple general result from which they computed the

fluctuations for a few examples of deterministic initial conditions. Especially, when the density profile has

a discontinuity of order O(1) at the shock and both sides of the shock have Airy2 fluctuations, the particle

fluctuations at the shock are distributed as the maximum of two independent GUE Tracy-Widom random

variables with possibly different variances. The part (i) (c) of the next theorem shows that the infinite

TASEP with periodic step initial condition has the same property. However, there are two main differences

from [15]. The first is that there are infinitely many shocks here whereas there is only one shock in [15].

The other is that the discontinuity can be as small as O(Lε−1/2). These differences make the analysis more

complicated.

Theorem 1.3. (Periodic step initial condition 2. Near a shock)

(i) Consider the infinite TASEP as in the previous theorem with 0 < α ≤ 1. For fixed constants ε > 0

and C > 0, let jN be a positive integer sequence satisfying 1 ≤ jN < CN1/2−ε for all N . Then for the

shock time sequence tN = sjNN , we have the following result. Set

µ = µ(N) :=

√
jN − α+ 1

sjN
. (1.17)

(This is same as (1.13) with TN replaced by sjN ). Let κ2, σ2 be given by (1.14) and yN (u) by (1.15)

with the new definition of µ.

5



(a) (Particles in the higher density profile; u > 0) We have

yN (u)− 2µ1/3(1− µ)1/3ut
2/3
N

−σ2t
1/3
N

−→ A2(u)− u2 (1.18)

for u > 0 in the sense of convergence of finite dimensional distribution as N →∞.

(b) (Particles in the lower density profile; u < 0) We have

yN (Qu)− 2µ̃1/3(1− µ̃)1/3ut
2/3
N

−Rσ2t
1/3
N

−→ A2(u)− u2 (1.19)

for u < 0 in the sense of convergence of finite dimensional distribution as N →∞, where

µ̃ = µ̃(N) :=

√
jN − α
sjN

, Q = Q(N) :=
µ̃4/3(1− µ̃)1/3

µ4/3(1− µ)1/3
, R = R(N) :=

µ̃−1/3(1− µ̃)2/3

µ−1/3(1− µ)2/3
.

(1.20)

(c) (Particle at the discontinuity point; u = 0) If we further assume lim
N→∞

jN exists in [1,∞], then

yN (0)

−σ2t
1/3
N

⇒ max{χ(1)
2 , rχ

(2)
2 } (1.21)

in distribution as N →∞, where χ
(k)
2 , k = 1, 2, are two independent GUE Tracy-Widom random

variables. The parameter r = limN→∞R(N) is given by

r =

(
j∞ − α

j∞ − α+ 1

)−1/6
( √

sj∞ −
√
j∞ − α

√
sj∞ −

√
j∞ − α+ 1

)2/3

(1.22)

if j∞ := lim
N→∞

jN is finite, and r = 1 if lim
N→∞

jN =∞.

(ii) The same result holds for the periodic TASEP.

The Airy2 processes appearing in parts (a) and (b) are independent. The two cases (a) and (b) can be

formally expressed as a uniform formula which holds for all u ∈ R as follows. Let A2(u) and Ã2(u) be two

independent Airy2 processes, and set A(1)(u) = A2(u) − u2 and A(2) = Ã2(u) − u2. The result (1.18) for

case (a) can be written formally as

yN (u)

−σ2t
1/3
N

≈ C1ut
1/3
N +A(1)(u), u > 0, (1.23)

where C1 := −2µ2/3(1−µ)−1/3. On the other hand, if we replace u by u/Q in case (b), (1.19) can be written

formally as
yN (u)

−σ2t
1/3
N

≈ C2ut
1/3
N +RA(2)(Q−1u), u < 0, (1.24)

where C2 := −2µ̃−1µ5/2(1 − µ)−1/3. Note that C2 = µ
µ̃C1 < C1 < 0. Theorem 1.3 (a) and (b) can thus

formally be written as

yN (u)

−σ2t
1/3
N

≈ max
{
C1ut

1/3
N +A(1)(u), C2ut

1/3
N +RA(2)(Q−1u)

}
. (1.25)
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The leading order term on the right-hand side is t
1/3
N . Since C2 < C1 < 0, we find that the maximum is

different for u > 0 and u < 0 resulting in (1.23) and (1.24), respectively.

Formally, (1.25) implies (c). Indeed, setting u = 0 in (1.25) and recalling that the marginals of the Airy2

process are distributed as the GUE Tracy-Widom distribution, we formally obtain

yN (0)

−σ2t
1/3
N

≈ max{χ(1)
2 , Rχ

(2)
2 } ≈ max{χ(1)

2 , rχ
(2)
2 }. (1.26)

We may also set u = ξt
−1/3
N in (1.25) and formally obtain

yN (ξt
−1/3
N )

−σ2t
1/3
N

≈ max{C1ξ + χ
(1)
2 , C2ξ +Rχ

(2)
2 } ≈ max{c1ξ + χ

(1)
2 , c2ξ + rχ

(2)
2 } (1.27)

for all ξ ∈ R, where c1, c2 are the limits of C1 and C2 as N →∞. Note that the GUE Tracy-Widom random

variables χ
(1)
2 , χ

(2)
2 are same for all ξ. A slight extension of the proof for the case (c) implies this result but

we do not include the proof in this paper. (See Corollary 2.7 of [15] for a similar case for infinite TASEP.)

Remark 1.2. When ρ > 1/2, the following holds. In this case it is easy to see that, after time (ρ−1−1)N +

O(N1/2), the rightmost particle will meet the leftmost one (on the ring) and then cannot move for certain

time, which we call frozen time, until the local density becomes less than 1. If a particle falls into its frozen

time, it stays at its location and the average speed is zero. Besides of this situation, the particle fluctuations

are the same as that in the case ρ ≤ 1/2. More explicitly, let us define

s′j =

{
j + 1− α, j = 0, 1, · · · , j0 − 1,

sj , j ≥ j0,
(1.28)

and

s′′j =


(√

j − α+
√
j(ρ−1 − 1)

)2

, j = 1, · · · , j0 − 1,

sj , j ≥ j0,
(1.29)

where

j0 := min

{
j ≥ 1; j

(√
j − α+

√
j + 1− α

)2

≥ ρ

1− ρ

}
. (1.30)

Then Theorem 1.2 holds if we replace Sj by (s′j , s
′′
j+1), and Theorem 1.3 hold provided j ≥ j0 for all j. Note

that when j < j0, s′′j < s′j, and hence there is a gap between the two intervals Sj−1 and Sj which is exact a

frozen time.

1.2.3 Relaxation and super-relaxation time scale

In the super-relaxation time scale t� L3/2, the density profile is flat for both infinite TASEP and periodic

TASEP with periodic step initial condition. However, the two models are expected to have different fluctu-

ations. For the infinite TASEP, the distance scale O(L) of the initial condition is smaller than the spatial

correlation scale O(t2/3) when t � L3/2, the initial condition is effectively flat. This can be seen easily

using the corresponding directed last passage percolation: see Section 3.5 for a further discussion. Since the

initial condition is still deterministic, we expect that the fluctuations are of order t1/3 and are given by the

Airy1 process. On the other hand, the periodic TASEP is expected to have t1/2 fluctuations with Gaussian

distribution because it is expected to be in the equilibrium dynamics due to the system size effect.

In the relaxation time scale t = O(L3/2), it was shown in [24, 4] that the one-point distribution for

the periodic TASEP has t1/3 height fluctuations and converges to a distribution which is different from the

GUE Tracy-Widom distribution. The infinite TASEP should also have t1/3 height fluctuations but with the

one-point distribution which is presumably different from the periodic case. See Section 3.5 for a heuristic

discussion about this distribution function.

7



1.3 Organization of the paper

We prove the theorems by studying the corresponding directed last passage percolation (DLPP) models:

the periodic DLPP and the usual DLPP. In Section 2, we estimate the probability of the event that the

maximal path deviates from the diagonal path in both DLPP models. Translated into TASEP, this implies

that in the sub-relaxation time scale, the fluctuations of the periodic TASEP and the infinite TASEP have

the same distribution with high probability. Putting together with the known fluctuation results on the

usual DLPP and their extensions to the periodic step initial condition, we prove the theorems in Section 3.

Some technical lemmas are postponed to Section 4. Finally, in Appendix A we discuss the evolution of the

density profile by solving the Burger’s equation with the periodic step initial condition.
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2 Periodic directed last passage percolation

The periodic directed last passage percolation (DLPP) model is defined as follows. The period of the model

is a lattice point v = (v1,v2) ∈ Z2 satisfying v2 < 0 < v1. We assign periodic random variables w(p) to

p ∈ Z2 satisfying w(p) = w(p + v). Apart from the periodicity, we assume that the random variables w(p)

are i.i.d. The point-to-point last passage time from p = (p1,p2) ∈ Z2 to q = (q1,q2) ∈ Z2 is defined by

Hp(q) =


max
π

∑
r∈π

w(r), if p1 ≤ q1 and p2 ≤ q2,

−∞, otherwise,

(2.1)

where the maximum is taken among all the possible up/right lattice paths2 π starting from p and ending

at q, and the summation is taken over all lattice points r on the path π. For simplification, we write

H0(q) = H(q) when p = 0.

The usual DLPP model is the case with3 |v| = ∞. In this case, w(p) are i.i.d. for all p ∈ Z2. The

point-to-point last passage time for the usual DLPP model is denoted by Gp(q). As above, we write G0(q)

by G(q).

We assume that w(p) are exponential random variables with parameter 1. The analysis in this paper can

also be applied to geometric random variables but we do not discuss it here. The goal of this section is to

compare the periodic DLPP with the usual DLPP. This is obtained by studying the transversal fluctuations.

2.1 DLPP

We first study the usual DLPP model without the periodicity condition.

2.1.1 Tail estimates of point-to-point last passage time

For any fixed positive constants c1 < c2 we define

Q(c1, c2) =
{
q = (q1,q2) ∈ Z2

+; c1 < q2/q1 < c2
}
. (2.2)

2A lattice path is a path consists of unit horizontal/vertical line segments whose endpoints are lattice points.

3|v| =
√

v2
1 + v2

2 denotes the norm of v = (v1,v2).
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It is well known that [18] for fixed positive constants c1, c2 satisfying c1 < c2,

P
(
G(q)− d(q)

s(q)
≤ x

)
→ FGUE(x) (2.3)

for all x ∈ R as q ∈ Q(c1, c2) satisfies |q| → ∞. The constants in (2.3) are given by

d(q) = (
√

q1 +
√

q2)2, s(q) = (q1q2)−1/6(
√

q1 +
√

q2)4/3. (2.4)

The tail estimates of G(q) can be found in, for example, [1, Section 3.1] and [3, Sections 3 and 4]. The

following estimates are slightly stronger than those written explicitly in the above references, but they can

be obtained from the same analysis. We do not provide the detail here.

Lemma 2.1 (Tail estimates for DLPP). Suppose c1, c2 are both fixed positive constants satisfying c1 < c2.

Then there exist positive constants x0, C, and c such that

P
(
G(q)− d(q)

s(q)
≥ −x

)
≥ 1− e−cx

3/2

, (2.5)

and

P
(
G(q)− d(q)

s(q)
≤ x

)
≥ 1− e−cx, (2.6)

for all x ≥ x0 and q ∈ Q(c1, c2) satisfying |q| ≥ C.

2.1.2 Transversal fluctuations of DLPP

The maximal path from p to q is concentrated about the diagonal line segment pq with the traversal

fluctuations of order |q − p|2/3 [19, 2].4 For our purpose, we need to estimate the deviations from the

diagonal line segment. For the Poisson version of the DLPP model, such an estimate was proved for the case

when q1 = q2 by Basu, Sidoravicius, and Sly in [5]. In our case, we need an uniform estimate for different

end points q in Q(c1, c2) for the DLPP model with exponential random variables. See Remark 2.1 below for

a comparison between our proof with that of [5].

We introduce two notations. For two lattice points p = (p1,p2) and q = (q1,q2) satisfying p1 ≤ q1 and

p2 ≤ q2, we denote by πmaxp (q) a maximal up/right lattice path from p to q: it satisfies
∑

r∈πmaxp (q) w(r) =

Gp(q). If there are more than one such path, we pick the topmost one. When p = 0, we write πmax(q) for

πmax0 (q). For y > 0, we set Bpq(y) = {r ∈ Z2; dist (r,pq) ≤ y}.

Proposition 2.1 (Estimate for the transversal fluctuations of DLPP). For fixed positive constants c1 < c2
and ε, there exist positive constants C and c such that

P
(
πmax(q) ⊆ B0q(y|q|2/3)

)
≥ 1− e−cy

2

(2.7)

for all q ∈ Q(c1, c2) satisfying |q| > C, and all y satisfying (log |q|)1/2+ε ≤ y ≤ |q|1/3.

Remark 2.1. For the Poissonian version of the DLPP, Basu, Sidoravicius, and Sly obtained a weaker

lower bound 1 − e−cy for the special case q1 = q2 only, but their estimate applies to all y ≥ C. See [5,

Theorem 11.1]. They used a tail estimate on where the maximal path intersects the middle vertical line

{p = (p1,p2) ∈ R2; p1 = q1/2}, and then used a so-called chaining argument to recurrently apply this

4These results are for the Poissonian version of DLPP and the geometric random variables, but the results extend to

exponential random variables. But we do not need these results. Instead we use the ideas in them to prove Proposition 2.1

below which implies this statement for exponential variables.
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Figure 2: Illustration of Γ and Γ±

estimate. Our approach is different. We mainly use the tail estimates in Lemma 2.1 and prove that the

probability the maximal path intersects the boundary of B0q(y|q|2/3) is very small. The proof given here is

much simpler since we assume that y ≥ (log |q|)1/2+ε. Basu, Sidoravicius, and Sly needed more delicate

argument in order to obtain an estimate for y = O(1). On the other hand, here we need to be careful with

the uniformity in q in Q(c1, c2).

We also note that the Gaussian estimate is not optimal. It is believed that the optimal exponent in the

tail should be y3 since the argmax of A2(y)− y2 (where A2(y) is the Airy2 process) has the tail e−c|y|
3

, see

[12, 25, 10] for the discussions about the argmax.

Proof of Proposition 2.1. Fix q ∈ Q(c1, c2). We set Γ = 0q. Consider the two lines which are parallel to

0q and of distance y|q|2/3 to 0q. We denote by Γ+ the part of the top line which lies inside the rectangle

with vertices (0, 0), (q1, 0), (q1,q2), and (0,q2). The similar part of the bottom line is denoted by Γ−. See

Figure 2.

We say that a lattice point p is neighboring to line L if there exists a real constant c with |c| < 1 satisfying

p + ce is on L, where e is either the vector (0, 1) or (1, 0). Note that when c = 0, p is on the line L. We

also call the set of all lattice points neighboring to the line the neighborhood of the line. One key fact about

this definition is that any lattice path intersecting a line will contain at least one point in the neighborhood

of the line.

Set

A± = {p = (p1,p2) ∈ Z2 ; p is neighboring to Γ±, 0 ≤ p1 ≤ q1, 0 ≤ p2 ≤ q2}. (2.8)

Since a lattice path intersecting Γ± contains at least one lattice point in A±, we have

P
(
πmax(q) ⊆ B0q(y|q|2/3)

)
= 1− P

(
πmax(q) intersects Γ±

)
≥ 1−

∑
p∈A±

P (p ∈ πmax(q)) .
(2.9)

Note that there are only O(|q|) points in A±. Since we assume that y ≥ (log |q|)1/2+ε, the proposition

follows if we show that

P (p ∈ πmax(q)) ≤ e−cy
2

(2.10)

for all p ∈ A±. By symmetry, we only consider A+. We consider three cases separately.

Case 1: Suppose that the point p = (p1,p2) ∈ A+ satisfies p1 ≤ ε1y|q|2/3. This implies that p is near

the left endpoint of Γ+. Here ε1 is a small positive constant independent of q. The value of ε1 will be

determined later.

Let r = (r1, r2) be the point in A+ satisfying

r1 =
[
ε1y|q|2/3

]
, r2 =

y|q|5/3

q1
+ ε1

yq2|q|2/3

q1
+O(1) (2.11)

10



where O(1) is a term bounded by 2 so that p ∈ A+. We also denote by r′ = (r′1, r
′
2) the point in A+ with

r′1 = 0, r′2 =
y|q|5/3

q1
+O(1). (2.12)

See Figure 3. We observe that in the event that p ∈ πmax(q), we have G(q) = G(p)+Gp(q) ≤ G(r)+Gr′(q)

since Gp(q) ≤ Gr′(q) and G(p) ≤ G(r). Therefore,

P (p ∈ πmax(q)) ≤ P (G(q) ≤ G(r) +Gr′(q)) . (2.13)

Now we take ε1 sufficiently small such that

d(r) + d(q− r′) ≤ d(q)− c3y|q|2/3, (2.14)

for some positive constant c3. This is is equivalent to√ε1y|q|2/3 +

√
y|q|5/3

q1
+ ε1

yq2|q|2/3
q1

2

+

√q1 +

√
q2 −

y|q|5/3
q1

2

+O(1) ≤ (
√

q1 +
√

q2)
2−c3y|q|2/3.

(2.15)

The left hand side of the above inequality equals to

(
√

q1 +
√

q2)
2 −

(
|q|
√

q1q2
− ε1

q1 + q2

q1
− 2
√
ε1

√
|q|+ ε1q2√

q1

)
· y|q|2/3 + o(y|q|2/3). (2.16)

Therefore, if we choose c3 < minq∈Q(c1,c2)
|q|√
q1q2

and ε1 small enough such that

ε1
q1 + q2

q1
+ 2
√
ε1

√
|q|+ ε1q2√

q1
< min

q∈Q(c1,c2)

|q|
√

q1q2
− c3 (2.17)

uniformly for all q ∈ Q(c1, c2), then (2.14) holds.

Note that r ∈ Q(c′1, c
′
2) and q − r′ ∈ Q(c′1, c

′
2) for some positive constants c′1, c

′
2 which depends only on

ε1, c1, and c2. Hence using Lemma 2.1, we obtain

P (G(q) ≤ G(r) +Gr′(q))

≤1− P
(
G(q) > d(q)− c3

3
y|q|2/3, G(r) < d(r) +

c3
3
y|q|2/3, Gr′(q) < d(q− r′) +

c3
3
y|q|2/3

)
≤3− P

(
G(q) > d(q)− c3

3
y|q|2/3

)
− P

(
G(r) < d(r) +

c3
3
y|q|2/3

)
− P

(
Gr′(q) < d(q− r′) +

c3
3
y|q|2/3

)
≤e−cy|q|

1/3

≤ e−cy
2

(2.18)

for some constant c independent of q. Together with (2.13), this implies (2.10).

Case 2: Suppose that the point p = (p1,p2) satisfies q2−p2 ≤ ε2y|q|2/3. The proof is similar to Case 1.

Case 3: Suppose that the point p = (p1,p2) satisfies p1 ≥ ε1y|q|2/3 and q2−p2 ≥ ε2y|q|2/3, where ε1, ε2
are determined in the previous two cases. Note that in this case p is of distance at least min{ε1, ε2}y|q|2/3
to the endpoints of Γ+, and hence p and q−p are both in Q(c′′1 , c

′′
2) for some positive constants c′′1 , c

′′
2 which

are independent of q and p. We will show that

d(p) + d(q− p) ≤ d(q)− c4y2|q|1/3 (2.19)

11



Figure 3: Illustration of p, r and r′ in Case 1 Figure 4: Illustration of p and q′ in Case 3

for some constant c4 independent of q. Assuming this inequality, (2.10) follows easily from an argument

similar to (2.18). Therefore it remains to show (2.19).

To prove (2.19), it is sufficient to show the following two inequalities:

d(p) ≤ d(q′)− 1

2
c4y

2|q|1/3, d(q− p) ≤ d(q− q′)− 1

2
c4y

2|q|1/3, (2.20)

where q′ is a lattice point neighboring to Γ which is given by

q′1 = p1 +
y|q|5/3

√
q2(
√

q1 +
√

q2)
+O(1), q′2 = p2 −

y|q|5/3
√

q1(
√

q1 +
√

q2)
+O(1), (2.21)

with O(1) terms bounded by 2. Noting that p2 = p1
q2

q1
+ y|q|5/3

q1
, this guarantees the existence of q′

neighboring to Γ satisfying the above equation. See Figure 4. Consider the first inequality of (2.20). A

tedious calculation shows that

d(q′)− d(p) +O(1)

=

(√
p1 +

y|q|5/3
√

q2(
√

q1 +
√

q2)
+

√
p2 −

y|q|5/3
√

q1(
√

q1 +
√

q2)

)2

− (
√

p1 +
√

p2)
2

=

(
p1 +

y|q|5/3
√

q2(
√

q1 +
√

q2)

)(
1 +

√
q2

q1

)2

−

√p1 +

√
p1 ·

q2

q1
+
y|q|5/3

q1

2

=
y2|q|10/3

p1q1
√

q1q2

√q2

q1
+

√
q2

q1
+
y|q|5/3
p1q1

−2

(2.22)

where the term O(1) comes from the O(1) perturbations in (2.21). Since p1 ≥ ε1y|q|2/3, the right hand side

of (2.22) is at least
1

2
c4y

2|q|1/3 (2.23)

where c4 only depends on c1, c2 and ε1. Thus we proved the first inequality of (2.20). The second one follows

by observing that if we do the following change of variables the second inequality becomes the first one

q = (q1,q2)→ q̃ = (q2,q1),

p = (p1,p2)→ p̃ = (q2 − p2,q1 − p1),

q′ = (q′1,q
′
2)→ q̃′ = (q2 − q′2,q1 − q′1).

(2.24)
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Figure 5: Illustration of Γ±j and R±j
Figure 6: Illustration of πmax(q) and the points

p,p′

2.2 Transversal fluctuations of periodic DLPP

We now consider the periodic DLPP. Recall that the period v = (v1,v2) is the lattice such that v2 < 0 < v1

and w(q+v) = w(q) for all lattice points q. We denote by Pv the probability measure of the periodic DLPP

and by P the probability measure of the usual DLPP. We use the same notations Q(c1, c2), πmaxp (q), and

Bpq(y) as in Subsection 2.1. Note that if dist (v,pq) > 2y, then the random variables w(r) with r ∈ Bpq(y)

are independent since for any r, r′ ∈ Bpq(y), we have r− r′ 6= v.

Proposition 2.2 (Estimate for transversal fluctuations in periodic DLPP). For fixed positive constants

c1 < c2 and ε, there exist positive constants C and c such that

Pv

(
πmax(q) ⊆ B0q(y|q|2/3)

)
≥ 1− e−cy

2

(2.25)

for all q ∈ Q(c1, c2) satisfying |q| ≥ C, y satisfying (log |q|)1/2+ε ≤ y ≤ |q|1/3, and v satisfying dist (v,0q) >
3
2y|q|

2/3.

Proof of Proposition 2.2. Denote by Γ the line segment 0q. Let R be the rectangle of which Γ is the diagonal.

We denote the two triangles in R split by Γ by R+ and R− from left to right. Set

Γ±j :=

{
u ∈ R± ; dist (u,Γ) =

1

2
jy|q|2/3

}
, j = 1, 2, · · · . (2.26)

We also set R+
j to be the region in R+ bounded by Γ+

j and Γ+
j−1 for each j = 1, 2, · · · . We define R−j

similarly. Here Γ±0 = Γ. See Figure 5 for an illustration.

Note that B0q(y|q|2/3) ∩R = R+
2 ∪R

+
1 ∪R

−
1 ∪R

−
2 . If πmax(q) 6⊆ B0q(y|q|2/3), then it intersects either

Γ+
2 or Γ−2 . When πmax(q) intersects Γ+

2 , there exists the largest j ≥ 1 and two leftmost lattice points p

and p′ which are neighboring to Γ±j , such that πmax(q) (1) passes p and p′, (2) intersects Γ+
j+1, (3) does

not intersect Γ+
j+2, and (4) the part of πmax(q) between p and p′ stays in Rj+1 ∪ Rj+2. See Figure 6 for

an illustration. This implies that the maximal path from p to p′ in the region R+
j ∪R

+
j+1 ∪R

+
j+2 intersects

Γ+
j+1. Note that from the condition 3

2y|q|
2/3 < dist (v,0q), the random variables w(p) are independent for

p in three consecutive regions R±j . In particular, w(p) are independent for p in the region R+
j ∪R

+
j+1∪R

+
j+2,

and hence the probability that the maximal path from p to p′ in the region R+
j ∪ R

+
j+1 ∪ R

+
j+2 intersects

Γ+
j+1 is at most the probability that the maximal path from p to p′ in usual DLPP intersects Γ+

j+1. Hence,
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denoting by A±j the set of lattice points in R which are neighboring to Γ±j , we find from Proposition 2.1 that

Pv

(
πmax(q) intersects Γ+

2

)
≤
∑
j≥1

∑
p,p′∈A+

j

Pv

(
πmaxp (p′) stays in R+

j ∪R
+
j+1 ∪R

+
j+2 and intersects Γ+

j

)
≤
∑
j≥1

∑
p,p′∈A+

j

P
(
πmaxp (p′) intersects Γ+

j

)
≤
∑
j≥1

∑
p,p′∈A+

j

e−cy
2|q|4/3|p−p′|−4/3

≤
∑
j≥1

∑
p,p′∈A+

j

e−cy
2

(2.27)

where the constant c is independent of p,p′ and q. Since there are at most O(|q|1/3 · |q|2) terms in the sum

and y ≥ log(|q|)1/2+ε
, we obtain

Pv

(
πmax(q) intersects Γ+

2

)
≤ e−cy

2

(2.28)

for a different constant c. Similarly the probability that πmax(q) intersects Γ−2 is bounded by e−cy
2

. Hence,

we obtain (2.25).

2.3 Comparison between DLPP and periodic DLPP

We now compare the last passage time in DLPP and periodic DLPP. We first embed both models in the

same probability space so that the last passage times in two models can be compared directly.

Let v be a lattice point. Suppose R is a set of lattice points such that

(R + v) ∩R = ∅, Z2 = ∪i∈Z(R + iv). (2.29)

Consider the probability space in which every lattice point p is assigned with an i.i.d. exponential random

variables w(p). We define new variables w̃(r + iv) = w(r) for all r ∈ R and i ∈ Z. The assumptions on R

imply that that w̃(p) is well-defined, is defined for all p ∈ Z, and satisfies the periodicity w̃(p) = w̃(p + v)

for all p ∈ Z2. Let Gp(q) and H
(R)
p (q) be the last passage times from p to q with respect to the weights w

and w̃, respectively. Here we put an index R in H in order to indicate the dependence on the choice of R.

As before, we write H(R)(q) = H
(R)
0 (q) and G(q) = G0(q).

We have the following result.

Proposition 2.3. Let c1 < c2 and λ be all fixed positive constants. Then there exist positive constants C

and c such that

P

 ⋂
|q′−q|≤λ|q|2/3

{
H(R)(q′) = G(q′)

} ≥ 1− e−c|v|
2|q|−4/3

(2.30)

for all q ∈ Q(c1, c2) such that |q| ≥ C, and for all R = Z2 ∩ {xv + yq;−1/2 < x ≤ 1/2, y ∈ R} where

v = (v1,v2) is any point in Z2 satisfying v2 < 0 < v1 and |v| ≥ |q|2/3 (log |q|)1/2+ε
.

Proof. Using Propositions 2.1 and 2.2, we have

P
(
H(R)(q′) 6= G(q′)

)
≤ e−c|v|

2|q|−4/3

(2.31)

for all q,q′ ∈ Z2 satisfying |q| ≥ C and |q′ − q| ≤ λ|q|2/3. Here the constants C and c are independent of q

and q′. Since there are only O(|q|4/3) such lattice points q′, and |v|2|q|−4/3 ≥ (log |q|)1+2ε, we obtain (2.30)

(with different C and c).
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Figure 7: The periodic DLPP corresponding to

the periodic TASEP with step initial condition.

Here L = 7 and N = 3. The blocks with the same

numbers are identical.

Figure 8: The periodic DLPP corresponding to

the periodic TASEP with flat initial condition.

Here L = 12 and N = 4. The blocks with the

same numbers are identical.

Clearly, for arbitrary R satisfying the conditions (2.29), we have

Pv(Hp(q) = k) = P
(
H(R)

p (q) = k
)

(2.32)

for all lattice points p and q, and all k ∈ Z≥1. As a corollary of Proposition 2.3, we have

Pv

(
H(q)− d(q)

s(q)
≤ x

)
→ FGUE(x) (2.33)

for each x ∈ R as q ∈ Q(c1, c2) satisfies |q| → ∞ and v ≥ |q|2/3(log |q|)1/2+ε →∞.

3 Proof of theorems

3.1 Map from periodic TASEP to periodic DLPP

The standard map from infinite TASEP to the usual DLPP extends easily to a map from periodic TASEP

to periodic DLPP, which we explain now. Let v = (L−N,−N). This vector will represent the period of the

periodic DLPP. The initial condition of the periodic TASEP gives rise to the boundary path of the periodic

DLPP as follows. Given the initial condition xk(0) of the periodic TASEP, let Λ be the lattice path in Z2

defined by the set of points u = (u1, u2) ∈ Z2 satisfying either

i+ 1 + xN−i(0) ≤ u1 ≤ i+ xN+1−i(0), u2 = i+ 1 (3.1)

or

u1 = i+ xN+1−i(0), i ≤ u2 ≤ i+ 1 (3.2)

for some i ∈ Z. Then Λ is a lattice path whose lower-left corners are (i+ xN+1−i(0), i) , i ∈ Z. It is invariant

under the translation by v, i.e., Λ + v = Λ. Especially, for the periodic step initial condition Λ is a staircase

shape lattice path with lower left corners ci := (1, 1) + iv, and for the flat initial condition Λ is a “flat”

lattice path which consists of consecutive vertical and horizontal line segments with length 1 and ρ−1 − 1

respectively. See Figures 7 and 8 for an illustration.

We define the random variables w(i, j) associated to site (i, j) by the waiting time of the (N + 1− j)-th
particle, after the right neighboring site becomes empty, stays at the site i − j. Then w satisfies w(p) =

w(p + v) for all p on the upper right side of the boundary path Λ. See Figures 7 and 8. We set w(p) = −∞
for p on the lower left side of Λ.

If we remove the restrictions w(q) = w(v + q) in the above setting and suppose w(q) are i.i.d. for all

q on Λ or at the upper right side of Λ, then we obtain the usual DLPP with the boundary Λ. Here we

assume Λ is the same lattice path defined by the initial condition of the periodic TASEP. Then this new
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DLPP corresponds to the infinite TASEP with the same initial condition. Therefore in terms of DLPP, the

difference between periodic TASEP and infinite TASEP is the periodicity w(p) = w(p + v).

The relation between xj(t) in the infinite TASEP and the line-to-point last passage time of the usual

DLPP is well-known. Define the line-to-point last passage time in the usual DLPP model as

GΛ(q) = max
p∈Λ

Gp(q). (3.3)

Then, for integer a satisfying a ≥ xk(0),

xk(t) ≥ a in the infinite TASEP⇐⇒ GΛ(q) ≤ t in the corresponding DLPP, (3.4)

where

q = (N + a− k,N + 1− k). (3.5)

For the periodic model, the relation is same. We set

HΛ(q) = max
p∈Λ

Hp(q) (3.6)

where Hp(q) is defined in (2.1). Then, for integer a satisfying a ≥ xk(0),

xk(t) ≥ a in the periodic TASEP⇐⇒ HΛ(q) ≤ t in the corresponding periodic DLPP, (3.7)

where q is defined in (3.5).

We use (3.4) and (3.7) to prove our main theorems in the next three subsections. The proofs of some

technical lemmas are postponed to Section 4. We will show that the sub-relaxation time scale implies

that Proposition 2.2 is applicable. Hence under the sub-relaxation time scale, the last passage time in the

periodic DLPP has the same distribution as the last passage time in the usual DLPP with high probability.

See Proposition 2.3. Hence in the leading order, we have formally

Hp(q) ≈ Gp(q) ≈ d(q− p). (3.8)

For the periodic step initial condition, the geometry of the boundary path Λ implies that

d(q− p) = max
i
d(q− ci), (3.9)

where ci := (1, 1) + iv are the lower-left corners of Λ. It is a simple calculation to check which i gives the

largest contribution using the explicit formula of the function d. We find that for each i, there is a curve

given by the set of points q such that d(q − ci) = d(q − ci+1). If q is away from these curves, there is

unique maximizer i. For q on a curve, there are two maximizers. These are illustrated in Figure 9. In

terms of periodic TASEP and infinite TASEP, the curves correspond to the the space-time trajectory of the

shocks. The maximizing indices are i = jN for Theorem 1.2 (away from shock) and and i = jN , jN − 1 for

Theorem 1.3 (near the shock). Then formally

HΛ(q) ≈ GΛ(q) ≈ d(q− cjN ) (3.10)

for the leading order. We show that HΛ(q) ≈ GΛ(q) even for the fluctuation term. The fluctuation term is

different for q away from or near the shock curves. The flat initial condition case is simpler.
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Figure 9: Illustration of the maximizers: q is on a dashed curve and there are two maximizers d(q− cj−1) ≈ d(q− cj). q′ is

away from the dashed curves, and there is a unique maximizer d(q′ − cj).

3.2 Proof of Theorem 1.1

For the flat initial condition (1.5), the boundary path Λ has lower-left corners

c̃i := ((1− ρ−1)i+ ρ−1(N + 1), i), i ∈ Z. (3.11)

By assumption, t = tN is a sequence satisfying tN ≤ CN3/2−ε and limN→∞ tN = ∞. To prove (1.7), we

need to show that for any fixed k ∈ Z≥1 and u1, · · · , uk ∈ R, and x1, · · · , xk ∈ R,

lim
N→∞

Pv

 k⋂
j=1

{
x

[κ1ujt
2/3
N ]

(tN ) ≥
[
(1− ρ)tN + ρ−1κ1ujt

2/3
N − σ1xjt

2/3
N

]} = P

 k⋂
j=1

{A1(uj) ≤ xj}


(3.12)

in the periodic TASEP model. Here we use the same notation Pv as in periodic DLPP to denote the

probability measure for the periodic TASEP. For notational convenience, we assume that κ1ujt
2/3
N and

(1 − ρ)tN + ρ−1κ1ujt
2/3
N − σ1xjt

2/3
N for j = 1, · · · , k are all integers; this assumption does not affect our

proof since O(1) perturbations in these terms do not change our argument below. Noting (3.7) and (3.5),

we define the following subset of Z2:

S =
{(
N + (1− ρ)tN + (ρ−1 − 1)κ1ujt

2/3
N − σ1xjt

2/3
N , N + 1− κ1ujt

2/3
N

)
∈ Z2; j = 1, · · · , k

}
. (3.13)

From (3.7), Theorem 1.1 follows if we show that

lim
N→∞

Pv

⋂
q∈S

{HΛ(q) ≤ tN}

 = P

 k⋂
j=1

{A1(uj) ≤ xj}

 (3.14)

On the other hand, the infinite TASEP with the same flat initial condition satisfies the result (3.12)

(with the subscript v removed) [26, 9] (see the footnote 1 under the discussions of Theorem 1.1). In terms

of DLPP, it means that

lim
N→∞

P

⋂
q∈S

{GΛ(q) ≤ tN}

 = P

 k⋂
j=1

{A1(uj) ≤ xj}

 (3.15)

which is a DLPP analog of (3.14). We prove Theorem 1.1 by showing that the left hand sides of (3.14)

and (3.15) are equal.

Define an index set

I := {i ∈ Z ; −[N/4] < N − i− ρ2tN ≤ [N/4]}. (3.16)

The next lemma shows that the main contribution on the left hand sides of (3.14) and (3.15) comes from

the indices in I. The proof of this lemma is given in Section 4.3.
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Lemma 3.1. For any j ∈ Z which is not in I, and any q ∈ S, we have

P
(
Gc̃j (q) > max

i∈I
Gc̃i(q)

)
< e−t

cε
N , Pv

(
Hc̃j (q) > max

i∈I
Hc̃i(q)

)
< e−t

cε
N (3.17)

for large enough N , where c is a constant independent of j, tN and N , and ε is the constant defined in

Theorem 1.1.

By Propositions 2.1 and 2.2, the maximal paths from the lattice points {c̃i; i ∈ I} to q in both periodic

DLPP and usual DLPP are concentrated with high probability in a strip whose vertical length is N/2 +

O(t
2/3+ε′′

N ), where ε′′ > 0 is a constant such that t
2/3+ε′′

N � N/2. In this strip all the entries are i.i.d. for

both models. Therefore we have

Pv

⋂
q∈S

{max
i∈I

Hc̃i(q) ≤ tN}

− P

⋂
q∈S

{max
i∈I

Gc̃i(q) ≤ tN}

→ 0 (3.18)

as N →∞. Together with Lemma 3.1, we proved that the left hand sides of (3.14) and (3.15) are equal.

3.3 Proof of Theorem 1.2

For the periodic step initial condition (1.9), the boundary path Λ has lower-left corners

ci = (1, 1) + iv = (1 + i(L−N), 1− iN), i ∈ Z. (3.19)

For the infinite TASEP, we need to show that for any fixed k ∈ Z≥1 and u1, · · · , uk ∈ R, and x1, · · · , xk ∈ R,

lim
N→∞

P

(
k⋂
i=1

{
x

[αN+κ2uit
2/3
N ]

(tN ) ≥
[
(1− 2µ)tN + ρ−1jNN + µ−1κ2uit

2/3
N − σ2xit

1/3
N

]})

= P

 k⋂
j=1

{
A2(uj)− u2

j ≤ xj
} . (3.20)

For notational convenience, we again assume that αN +κ2uit
2/3
N and (1− 2µ)tN + ρ−1jNN +µ−1κ2uit

2/3
N −

σ2xit
1/3
N are integers for all i = 1, · · · , k. Let S denote the set of lattice points(
(1− 2µ)tN + (ρ−1jN + 1− α)N − (1− µ−1)κ2uit

2/3
N − σ2xit

1/3
N , (1− α)N − κ2uit

2/3
N + 1

)
(3.21)

where i = 1, · · · , k. The result (3.20) follows if we show

lim
N→∞

P

⋂
q∈S

{GΛ(q) ≤ tN}

 = P

 k⋂
j=1

{
A2(uj)− u2

j ≤ xj
} . (3.22)

Similarly, for the periodic TASEP, we need to show that

lim
N→∞

Pv

⋂
q∈S

{HΛ(q) ≤ tN}

 = P

 k⋂
j=1

{
A2(uj)− u2

j ≤ xj
} . (3.23)

From the geometry of the boundary path Λ, the maximal paths from Λ to q are paths from some corners

to q. The following lemma shows that if the particle is away from a shock (which is the assumption of

Theorem 1.2), this corner is cjN with high probability. Recall that jN is the parameter introduced in the

statement of the theorem which measures the number of encounters with shocks by the particle [αN ]. The

lemma is proved in Section 4.1.
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Lemma 3.2. For all i ∈ Z satisfying i 6= jN , and all q ∈ S, we have

P
(
Gci(q) > GcjN

(q)
)
< e−t

cε
N , Pv

(
Hci(q) > HcjN

(q)
)
< e−t

cε
N (3.24)

for large enough N , where c is a constant only depending on u1, · · · , uk, x1, · · · , xk, and ε is the constant

defined in Theorem 1.2.

Now we prove (3.22) and (3.23). Using Lemma 3.2,

P

⋂
q∈S

{GΛ(q) ≤ tN}

 = 1− P

⋃
q∈S

{GΛ(q) > tN}


≥ 1− P

⋃
q∈S

{GcjN
(q) > tN}

− ∑
i6=jN

∑
q∈S

P
(
Gci(q) > GcjN

(q)
)

= P

⋂
q∈S

{Gcj (q) ≤ tN}

− ∑
i 6=jN

∑
q∈S

P
(
Gci(q) > GcjN

(q)
)

≥ P

⋂
q∈S

{Gcj (q) ≤ tN}

−∑
q∈S

c′N−1|q|e−t
cε
N

(3.25)

since there are at most O(N−1|q|) corners ci such that P
(
Gci(q) > Gcj (q)

)
6= 0. Here c′ is a positive

constant. We also have the trivial bound

P

⋂
q∈S

{GΛ(q) ≤ tN}

 ≤ P

⋂
q∈S

{GcjN
(q) ≤ tN}

 . (3.26)

Thus in order to prove (3.22), it is sufficient to show that

lim
N→∞

P

⋂
q∈S

{GcjN
(q) ≤ tN}

 = P

 k⋂
j=1

{
A2(uj)− u2

j ≤ xj
} . (3.27)

But q in S is of form (3.21) with some i = 1, · · · , k. Hence

q− cjN =
(

(1− µ)2tN − (1− µ−1)κ2u2t
2/3
N − σ2xit

1/3
N + o(t

1/3
N ), µ2tN − κ2uit

2/3
N

)
(3.28)

for some i = 1, · · · , k, where the o(t
1/3
N ) term equals to jN ([ρ−1N ] − L) � t

1/3
N . This is exactly the same

framework for the Airy2 process limit of multi-point distribution in the DLPP (see [22, 20, 7]), and it is

well-known that

lim
N→∞

P

⋂
q∈S

{G(q− cjN ) ≤ tN}

 = P

 k⋂
j=1

{
A2(uj)− u2

j ≤ xj
} . (3.29)

Hence (3.27) is proved.

For the periodic TASEP, (3.23) follows if we show that

lim
N→∞

Pv

⋂
q∈S

{HcjN
(q) ≤ tN}

 = P

 k⋂
j=1

{
A2(uj)− u2

j ≤ xj
} . (3.30)

Now, Proposition 2.3 shows that the left hand sides of both (3.30) and (3.27) are equal. Thus we obtain (3.30).
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3.4 Proof of Theorem 1.3

3.4.1 Parts (a) and (b)

Consider part (a). The proof of Theorem 1.2 applies without any change if we have Lemma 3.2 with

tN = sjNN and the under the restriction that u1, · · · , uk > 0. The proof of Lemma 3.2 still applies in this

set-up only after a small change; see the discussions in Subsection 4.1.4. Part (b) is similar.

3.4.2 Part (c)

The argument is similar to the proof of Theorem 1.2. In this case, we only consider the maximal path to a

single point, and hence we do not need the set S in the proof. Instead we only define one lattice point

q =
(

(1− 2µ)sjN + (ρ−1jN + 1− α)N − σ2xs
1/3
jN
, (1− α)N + 1

)
. (3.31)

After that, the proof proceeds same as before with the following lemmas in place of Lemma 3.2 and the

equations (3.27) and (3.30). Their proofs are given in Section 3.5 and we obtain the part (c).

Lemma 3.3. For all i ≥ jN + 1, we have

P
(
Gci(q) > GcjN

(q)
)
< e−t

cε
N , Pv

(
Hci(q) > HcjN

(q)
)
< e−t

cε
N (3.32)

for large enough N , where c is a constant independent of jN , tN and N , and ε is the constant defined in

Theorem 1.2. For all i ≤ jN − 2, we have (3.32) with cjN replaced by cjN−1.

Lemma 3.4. We have

lim
N→∞

P
(

max{GcjN
(q), GcjN−1

(q)} ≤ tN
)

= FGUE(x)FGUE(r−1x),

lim
N→∞

Pv

(
max{HcjN

(q), HcjN−1(q)} ≤ tN
)

= FGUE(x)FGUE(r−1x).
(3.33)

Remark 3.1. Ferrari and Nejjar [15] obtained a simple general theorem which shows that the fluctuations

at the shock are given by the maximum of two independent random variables under certain assumptions.

The difficult part is to check the assumptions, and they did it for a few examples. The infinite TASEP

with periodic step initial condition has two features which are not present in those examples: (i) there are

growing number of boundary corners ci’s while there were only two corners in the examples of [15], and (ii)

we are interested in the case when the end point of the maximal path is of order up to `3/2−ε if ` denotes

the distances between the consecutive boundary corners while in [15] the end point is of order O(`). It might

be possible to check the assumptions of the general theorem of Ferrari and Nejjar [15] for our case, but we

instead proceed more directly using some of the ideas in [15] instead of trying to check their assumptions.

Furthermore, we give an uniform proof for both infinite TASEP and the periodic TASEP, the later of which

is not discussed in [15].

3.5 One point fluctuations of infinite TASEP with periodic step initial condition

in relaxation time scale

In this subsection, we discuss the infinite TASEP with periodic step initial condition at the relaxation and

super-relaxation time scales mentioned in Subsection 1.2.3. We first consider relaxation time scale. Suppose

N = Nn and L = Ln are two sequences of integers such that

ρn :=
Nn
Ln

= ρ+O(L−1
n ) (3.34)
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as n→∞. Recall that the periodic step initial condition is

xi+lNn(0) = −Nn + i+ lLn (3.35)

for all 1 ≤ i ≤ Nn and all l ∈ Z. Let γ ∈ R and τ > 0 be two fixed constants. Set

tn =
Ln
ρn

[
τ
√
ρn√

1− ρn
L1/2
n

]
+
Ln
ρn
γ +

Ln
ρn

(
1− kn

Nn

)
(3.36)

where kn is an arbitrary integer sequence such that 1 ≤ kn ≤ Nn. Note that tn = O(L
3/2
n ) and hence this is

the relaxation time scale. In this case, we expect that

lim
n→∞

P

(
(xkn(tn)− xkn(0))− (1− ρn)tn + (1− ρn)Ln(1− kn/Ln)

ρ
−1/3
n (1− ρn)2/3t

1/3
n

≥ −x

)

= P

 ⋂
2τ2/3u−γ∈Z

{
A2(u)− u2 ≤ x

} ,

(3.37)

as we explain now.

This follows from the following corresponding result for the usual DLPP:

lim
n→∞

P
(

max
i
Gci(q) ≤ tn

)
= P

 ⋂
2τ2/3u−γ∈Z

{
A2(u)− u2 ≤ x

} , (3.38)

where

ci = (1, 1) + iv = (1 + i(ρ−1
n − 1)Nn, 1− iNn), i ∈ Z, (3.39)

and the point q = (q1,q2) satisfies

q1 = (1− ρn)tn − (1− ρn)Ln(1− kn/Ln)− ρ−1/3
n (1− ρn)2/3xt1/3n , (3.40)

and q2 = Nn + 1− kn. Note that

q− ci =

(
(1− ρn)2tn + (1− ρn)Ln

([
τ
√
ρn√

1− ρn
L1/2
n

]
− i+ γ

)
− ρ−1/3

n (1− ρn)2/3xt1/3n − 1,

ρ2
ntn − ρnLn

([
τ
√
ρn√

1− ρn
L1/2
n

]
− i+ γ

))
.

(3.41)

Since Ln = ρ
1/3
n (1 − ρn)1/3τ−2/3t

2/3
n + O(t

1/3
n ), we expect from the Airy2 convergence of the usual DLPP

[22, 20, 7] that formally
Gci(q)− tn

ρ
−1/3
n (1− ρn)−1/3t

1/3
n

≈ A2 (u)− u2 − x (3.42)

where

u =
1

2τ2/3

([
τ
√
ρn√

1− ρn
L1/2
n

]
− i+ γ

)
(3.43)

for all i ∈ Z. Thus we formally obtain (3.38). To make this rigorous, we need to prove the convergence in

all i. We do not pursue this direction here.

The scalings in (3.36) and (3.37) are same as those for the periodic TASEP with the same initial condition;

see equations (3.13) and (3.14) in [4]. The limiting distribution, F (x) = P
(⋂

2τ2/3u−γ∈Z
{
A2(u)− u2 ≤ x

})
,
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however, is presumably different from the one for the periodic TASEP obtained in [24, 4]. We note that for

the discrete-time infinite TASEP with ρ = 1/2, the fluctuations under very general initial conditions were

studied by Corwin, Liu, and Wang [13]. Assuming that the same holds for continuous-time infinite TASEP

with general ρ, the relaxation time scale with periodic step initial condition formally fits with the framework

of their result: it corresponds to the case of a discrete delta function as the initial profile. This implies,

formally, (3.37).

The super-relaxation case is, again formally, the case when τ = +∞ in the above analysis. Then the

right-hand side of (3.38) is expected to be

P

(⋂
u∈R

{
A2(u)− u2 ≤ x

})
= P

(
sup
u∈R

(A2(u)− u2) ≤ x
)
. (3.44)

It is known that this is same as the GOE Tracy-Widom distribution [20] after a simple scaling.

4 Proof of lemmas in Section 3

We prove the lemmas used in the previous section. We first prove Lemmas 3.2 and 3.3 in Subsection 4.1,

and then Lemma 3.4 in Subsection 4.2. Finally we prove Lemma 3.1 in Subsection 4.3.

Throughout this section, we use the notation c to denote a positive constant which is independent of the

parameters N , jN and tN . Even if the constant is different from one place to another, we may use the same

notation c as long as it does not depend on N , jN and tN . On the other hand, the notations c1, c2, etc. with

a subscription denote absolute constants which do not change from one place to another. We also suppress

the subscript N in jN and tN in this section for notational convenience.

We fix two positive constants c1 < c2 and consider the uniformity of the estimates in q ∈ Q(c1, c2).

Recall (2.2) for the definition of Q(c1, c2). We first prove a comparison lemma.

Lemma 4.1. Fix 0 < c1 < c2. Let ε′′ be a fixed positive constant. Then there exist positive constants C and

c which only depend on c1, c2 and ε′′, such that

Pv (H(q) ≤ H(q′)) ≤ e−c|q|
ε′′

(4.1)

for all q,q′ ∈ Q(c1, c2) and v = (v1,v2) ∈ Z2 satisfying |q| ≥ C, |q′| ≥ C,

d(q) > d(q′) + |q|1/3+ε′′ , (4.2)

v2 < 0 < v1, and |v| ≥ |q|2/3+ε′′/2. In particular, we have

P (G(q) ≤ G(q′)) ≤ e−c|q|
ε′′

. (4.3)

Proof. We have

Pv (H(q) ≤ H(q′))

≤ 1− Pv

(
H(q) > d(q)− 1

2
|q|1/3+ε′′ , H(q′) < d(q′) +

1

2
|q|1/3+ε′′

)
≤ 2− Pv

(
H(q) > d(q)− 1

2
|q|1/3+ε′′

)
− Pv

(
H(q′) < d(q′) +

1

2
|q|1/3+ε′′

)
.

(4.4)

Note that |v| ≥ |q|2/3+ε′′/2 � |q|2/3 log |q|. Using Proposition 2.3, the right hand side of (4.4) can be

replaced by

2− P
(
G(q) > d(q)− 1

2
|q|1/3+ε′′

)
− P

(
G(q′) < d(q′) +

1

2
|q|1/3+ε′′

)
+ e−c|q|

ε′′

. (4.5)

Combining with the tail estimates of DLPP in Lemma 2.1, we obtain (4.1).
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4.1 Proof of Lemma 3.2 and 3.3

We present our proof for the usual DLPP only. We use the transversal estimate, Proposition 2.1, and also

the inequality (4.3). The proof applies to the periodic DLPP without any change except that P and G are

replaced to Pv and H, and we use Proposition 2.2 and the inequality (4.1).

We consider Lemma 3.2 first. Recall that the corners ci are defined by (see (3.19))

ci = (1, 1) + iv = (i(L−N),−iN) +O(1), i ∈ Z. (4.6)

We need to compare the last passage time Gci(q) from ci with arbitrary index i to an arbitrary point q in

the set S. The lattice set S is finite and a point q = (q1,q2) in S is of form

q1 = (1− 2µ)t+ (ρ−1j + 1− α)N − (1− µ−1)κ2u`t
2/3 − σ2x`t

1/3 (4.7)

and

q2 = (1− α)N − κ2u`t
2/3 + 1 (4.8)

for some ` = 1, · · · , k. Since we are in the sub-relaxation time scale, tN ≤ O(N3/2−ε), we see that

q =
(
(1− 2µ)t+ (ρ−1j + 1− α)N, (1− α)N

)
+ o(N). (4.9)

Thus the leading term d(q− ci) of Gci(q) does not depend on ` = 1, · · · , k. In order to prove Lemma 3.2,

Pv

(
Gci(q) > Gcj (q)

)
< e−t

cε

, (4.10)

we need to find i at which d(q − ci) becomes the largest. This turns out to be i = j. For the case of

Lemma 3.3, the values at i = j and i = j − 1 are same to the leading order. In the actual proof, one needs

to be careful with the error term o(N) in (4.9) in order to make the argument work for all range of the

sub-relaxation time scale 1 � t � N3/2. We prove the result for i = j ± 1 first. After that, we obtain the

result for the case |i− j| ≥ 2 from the case |i− j| = 1.

In the proof, we assume that ci are on the lower-left side of q. Otherwise the inequality is trivial.

4.1.1 Proving (4.10) when |i− j| = 1

We use Proposition 2.1 and Lemma 4.1. To use them, in our case we need to check that q− ci ∈ Q(c1, c2).

When j = 0 and i = 1 or j = 1 and i = 2, it may not be possible to find fixed constants c1 and c2 such that

q− ci ∈ Q(c1, c2). We consider these cases separately.

Case (1): j = 0 and i = 1.

Since we assume that c1 is on the lower left of q, we have q1 ≥ (ρ−1 − 1)N +O(1), i.e.,

(
√
t−
√

(1− α)N)2 − (1− µ−1)κ2ut
2/3 − xµ−1/3(1− µ)2/3t1/3 ≥ (ρ−1 − 1)N +O(1). (4.11)

Note that it is possible that q1 is close to (ρ−1 − 1)N + O(1), which implies that q is close to the vertical

line with the corner c1. If this happens, q− c1 is not necessary in any given cone Q(c1, c2).

Pick two positive constants ε1 and ε2 such that(√
ρ−1 − 1 +

√
1− α

)2

> (
√
ε1 +

√
2− α)2 + ε2. (4.12)

Such constants exist since ρ−1 ≥ 2. Now set q′ = (q′1,q
′
2) = (

[
ε1N + (ρ−1 − 1)N

]
, N + 1− [αN ]), a lattice

point which is on the same horizontal line with q. See Figure 10. Note that our choice of q′ guarantees that

q′ stays in some cone Q(c1, c2) for all N .
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Figure 10: Illustration of q′ in Case (1) of Step (1)

Recall d(q) defined in (2.4). Then using (4.11) and (4.12), we have, for large enough N ,

d(q− c0) ≥
(√

(ρ−1 − 1)N +O(1) +
√

(1− α)N +O(1)
)2

>
(√

ε1N +O(1) +
√

(2− α)N +O(1)
)2

+ ε2N

= d(q′ − c1) + cN.

(4.13)

Hence, if q is on the left side of q′, we have

P (Gc1(q) > Gc0(q)) ≤ P (Gc1(q′) > Gc0(q)) ≤ e−cN
2/3

, (4.14)

where we applied Lemma 4.1. Note that |q| = O(N) = O(t) in this case. Thus, we obtain (4.10).

It remains to show (4.10) when q is on the right side of q′. In this case we have q−c0,q−c1 ∈ Q(c1, c2)

for some c1 and c2. Moreover, we can check that

d(q− c1) < d(q− c0)− cN (4.15)

for sufficiently large N . In fact, the above inequality, after dropping the smaller order terms, is equivalent to(√(√
TN −

√
1− α

)2

− (ρ−1 − 1) +
√

2− α

)2

< TN − c. (4.16)

Since TN is in a compact interval S(ε′)
1 , it is sufficient to show that√(√

TN −
√

1− α
)2

− (ρ−1 − 1) +
√

2− α <
√
TN . (4.17)

From (4.12), we find
√
TN >

√
1− α+

√
ρ−1 − 1 >

√
2− α. Then (4.17) is equivalent to

(
√
TN −

√
1− α)2 − (

√
TN −

√
2− α)2 < ρ−1 − 1, (4.18)

i.e.,

TN <

√
2− α+

√
1− α

2ρ
= s1, (4.19)

which is obvious since TN lies in the interval S(ε′)
1 . This implies (4.15). We then obtain (4.10) by applying

Lemma 4.1.

Case (2): j = 1 and i = 2.

Since we assume c2 is on the lower left of q, we have q1 ≥ 2(ρ−1 − 1)N +O(1), i.e.,

(
√
t−
√

(2− α)N)2 − (1− µ−1)κ2ut
2/3 − xµ−1/3(1− µ)2/3 ≥ (ρ−1 − 1)N +O(1). (4.20)
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Similarly to Case (1), it is possible that q1 is close to 1+2(ρ−1−1)N , which implies q is close to the vertical

line with the corner c2. The proof of (4.10) in this case is similar to Case (1), and we skip the details.

Case (3): j ≥ 2 and i = j ± 1, or j = 1 and i = 0.

In this case, we first show that there exist positive constants c1, c2 satisfying c1 < c2 such that q− ci ∈
Q(c1, c2) for sufficiently large N . In fact, it is sufficient to show that, when N is sufficiently large,

q2 + (j − 1)N − 1

q1 − (j − 1)(L−N)− 1
> c1, (4.21)

for all j ≥ 1 and
q2 + (j + 1)N − 1

q1 − (j + 1)(L−N)− 1
< c2 (4.22)

for all j ≥ 2. The first inequality, after dropping smaller order terms, becomes

j − α(√
TN −

√
j + 1− α

)2
+ ρ−1 − 1

> c1 (4.23)

for all N . Using
√
TN <

√
sj+1 ≤

√
j + 1− α + (ρ−1 − 1)

√
j + 2− α and

√
TN >

√
sj >

√
j + 1− α, the

above inequality is further reduced to

j − α
j + 2− α+ ρ/(1− ρ)

>
c1(1− ρ)2

ρ2
(4.24)

for all j ≥ 1. This holds if we choose c1 satisfying c1(1−ρ)2
ρ2 < minj≥1

j−α
j+2−α+ρ/(1−ρ) .

Similarly we can show the second inequality (4.22) holds for all j ≥ 2 and sufficiently large N , if we

choose c2 satisfying
c2(1− ρ2)

ρ2
> max

j≥2

j + 2− α
j − α− ρ/(1− ρ)

. (4.25)

Now we want to show that

d(q− ci) < d(q− cj)− ct
1
3 + 2

9 ε (4.26)

when N is sufficiently large. This inequality, after dropping smaller order terms, is equivalent to(√
(
√
TN −

√
j + 1− α)2 + (j − i)(ρ−1 − 1)− (1− µ−1)κ2ut2/3N−1 +

√
i+ 1− α− κ2ut2/3N−1

)2

<

(√
(
√
TN −

√
j + 1− α)2 − (1− µ−1)κ2ut2/3N−1 +

√
j + 1− α− κ2ut2/3N−1

)2

− ct 1
3 + 2

9 εN−1.

(4.27)

We first note that the right hand side of (4.27) equals to (by using
√
j − α+ 1 = µ

√
TN )

TN − ct
1
3 + 2

9 εN−1 +O(t1/3N−1). (4.28)

And note that ct
1
3 + 2

9 εN−1 ≤ O(N−
1
2−

2
9 ε

2

) < ε′ for sufficiently large N , where ε′ is the positive constant

defined in Theorem 1.2 such that TN ∈ S(ε′)
j . Together with the facts ρ ≤ 1/2 and t2/3N−1 ≤ O(N−

2
3 ε), we

have √
TN − ct

1
3 + 2

9 εN−1 >

√
j − α+

√
j + 1− α

2ρ
>
√
i+ 1− α− κ2ut2/3N−1. (4.29)
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Figure 11: Illustration of the monotonicity of P(Gci (q) > Gci+1 (q)) (left) and Pv(Hci (q) > Hci+1 (q)) (right)

Hence (4.27) is equivalent to(√
TN − ct

1
3 + 2

9 εN−1 −
√
i+ 1− α− κ2ut2/3N−1

)2

> (
√
TN −

√
j + 1− α)2 + (j − i)(ρ−1 − 1)− (1− µ−1)κ2ut

2/3N−1, (4.30)

and further to

2(i− j)√
i+ 1− α+

√
j + 1− α

(√
i+ 1− α+

√
j + 1− α

2
−
√
TN

)
> κ2ut

2/3N−1

(
µ−1 − 2

√
TN√

i+ 1− α+
√
i+ 1− α− κ2ut2/3N−1

)

+ ct
1
3 + 2

9 εN−1

(
1− 2

√
i+ 1− α− κ2ut2/3N−1

√
TN +

√
TN − ct

1
3 + 2

9 εN−1

)
. (4.31)

Now using the assumptions i = j ± 1 and TN ∈ Sε
′

j , we know the left hand side of (4.31) is positive and at

least cε′T−1
N . On the other hand, recalling µ =

√
j + 1− α/

√
TN , it is a direct to check that the first term

on the right hand side of (4.31) is at most

κ2|u|t2/3N−1O
(
T−1
N

)
� O(T−1

N ). (4.32)

And the second term on the right hand side of (4.31) is at most (by noting t ≤ O(N3/2−ε))

O(t
1
3 + 2

9 εN−1)� O(Nt−1) = O(T−1
N ). (4.33)

These three estimates implies that (4.31) holds for sufficiently large N .

By using (4.26) and Lemma 4.1, we obtain (4.10) for |i− j| = 1.

4.1.2 Proving (4.10) when |i− j| ≥ 2

We first show the following monotonicity:

P(Gci(q) > Gci+1(q)) ≤ P(Gci+1(q) > Gci+2(q)) (4.34)

for all i such that ci, ci+1, ci+2 are all in the lower left of q. Note that

P
(
Gci(q) > Gci+1

(q)
)

= P
(
Gci+1

(q + v) > Gci+2
(q + v)

)
(4.35)

due to the translation invariance of DLPP5. See Figure 11 for an illustration. Since the DLPP model is

2-dimensional, we observe that the maximal path from ci+1 to q + v intersects with the maximal path from

ci+2 to q. This implies that

Gci+1
(q) +Gci+2

(q + v) ≥ Gci+1
(q + v) +Gci+2

(q), (4.36)

5In the periodic DLPP case, we even have Hci (q) = Hci+1 (q + v) and Hci+1 (q) = Hci+2 (q + v) due to the periodicity.

See Figure 11.
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and hence

P
(
Gci+1

(q + v) > Gci+2
(q + v)

)
≤ P(Gci+1

(q) > Gci+2
(q)). (4.37)

Together with (4.35), this proves (4.34).

We now prove (4.10) when i ≤ j − 2. The case when i ≥ j + 2 is similar. We have

P
(
Gci(q) > Gcj (q)

)
≤ P

(
Gci(q) > Gci+1

(q)
)

+ P
(
Gci+1

(q) > Gcj (q)
)

≤ P
(
Gcj−1(q) > Gcj (q)

)
+ P

(
Gci+1(q) > Gcj (q)

) (4.38)

where we used the monotonicity (4.34) a few times to obtain the second inequality. Using the above inequality

recursively we find

P
(
Gci(q) > Gcj (q)

)
≤ (j − i)P

(
Gcj−1

(q) > Gcj (q)
)
. (4.39)

Then we apply (4.10) with i = j − 1 and note that j ≤ O(t/L)� O(t). We thus obtain

P
(
Gci(q) > Gcj (q)

)
≤ e−t

cε

. (4.40)

Hence the proof of Lemma 3.2 is complete.

4.1.3 Proof of Lemma 3.3

Proof for Lemma 3.3 is similar. In this case the time sequence satisfies t = sjN instead of t being in between

(sj + ε′)N and (sj+1− ε′)N . And the point q is given by (3.31) which is same as (3.21) with u = 0. The only

difference in this case is that i = j and i = j − 1 both should be considered as the maximizer of d(q − ci).

The rest of the argument is the same.

4.1.4 A remark for Section 3.4.1

A variation of Lemma 3.2 is used in Section 3.4.1 to prove Theorem 1.3 (a) (and (b) similarly). With the

new t = sjN and an additional restriction ui > 0 for 1 ≤ i ≤ k, the change is that the inequality (4.31)

should be checked separately when i = j− 1. In this case the left hand side of (4.31) is 0. However, the first

term on the right hand side of (4.31) is negative (since u > 0) and at least of order

O(t2/3N−1T−1
N ) = O(t−1/3) (4.41)

which dominate the second term O(t
1
3 + 2

9 εN−1). Therefore (4.31) still holds for sufficiently large N .

4.2 Proof of Lemma 3.4

The first equation of Lemma 3.4 is similar to Corollary 2.7 of [15], which follows from a general theorem

in the same paper (see Theorem 2.1 in [15]). We can apply this general theorem to our case. The only

change from Corollary 2.7 of [15] is that in order to check Assumption 3 for Theorem 2.1 in [15], we use

Proposition 2.1, which is a stronger tail estimate than used in [15]. This is needed since in our case |q| can

be as large as O(N3/2−ε) which was only O(N) in [15]. Alternatively the first equation also follows by the

same argument given below for the periodic TASEP.

For the second equation of Lemma 3.4, the result of Ferrari and Nejjar is not applicable directly due to

the periodicity. This periodicity implies that the maximal paths πmaxcj−1
(q) and πmaxcj (q) are not independent

near the corners cj−1 and cj respectively. Also note that these two paths may intersect near q. To handle

these dependencies, we need to consider the maximal paths with new starting (and ending) points such that

the new paths are asymptotically independent, then compare the last passage times given by the original

paths and the new ones. This idea is in [15] in which the dependence near q was handled.
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Figure 12: Illustration of the lattice points p,p′, r, and r′

Note that by using Propositions 2.1 and 2.2, both maximal paths from cj−1 and cj to q are bounded

in a strip with width of order O(t2/3+κε) ≤ O(N1−κε2) with high probability, where κ = 4/9 and ε is the

constant defined in Theorem 1.2 such that t < CN3/2−ε. Denote these two strips by Ωj−1 and Ωj .

We then pick lattice points p and p′ neighboring to qcj−1, and r and finally r′ neighboring to qcj , such

that the following conditions are satisfied:

(1) The part of the strip Ωj−1 between p and p′ does not “intersect” that of Ωj between r and r′, here

we say a set A ⊆ R2 does not “intersect” another set B ⊆ R2 if and only if A∩ (B+ iv) = ∅ for all integer i.

(2) d(q− p), d(p′ − cj−1), d(q− r), and d(r′ − cj) are all bounded by ctN−κε
2

.

(3) d(q− p) + d(p′ − cj−1) = d(q− r) + d(r′ − cj) +O(1).

See Figure 12 for an illustration of these points. To proceed, we need the following lemma.

Lemma 4.2 (Lemma 4.2 in [6]). Assume XN ≥ X̃N and XN ⇒ D1 as well as X̃N ⇒ D1; and similarly

YN ≥ ỸN and YN ⇒ D2 as well as ỸN ⇒ D2. Then if max{X̃N , ỸN} ⇒ D3, we also have max{XN , YN} ⇒
D3.

Set

XN =
Hcj−1

(q)− d(q− cj−1)−Hcj−1
(p′) + d(p′ − cj−1)−Hp(q) + d(q− p)

R−1s(q− cj−1)
,

X̃N =
Hp′(p)− d(p− p′)

R−1s(q− cj−1)
,

YN =
Hcj (q)− d(q− cj)−Hcj (r

′) + d(r′ − cj)−Hr(q) + d(q− r)

s(q− cj)
,

ỸN =
Hr′(r)− d(r− r′)

s(q− cj)
,

(4.42)

where R = R(N) is defined in (1.20). Then from (2.33) and the definition of p,p′, r, r′, these random

variables satisfy the conditions of Lemma 4.2 with D1 being a GUE Tracy-Widom random variable times

r = limN→∞R and D2 also being a GUE Tracy-Widom distribution. Now we note that Proposition 2.2

implies that the maximal path from p′ to p and the maximal path from r′ to r stay in Ωj−1 and Ωj
respectively with high probability. Therefore the two random variables Hp′(p) and Hr′(r) are independent

with high probability. Hence we have

lim
N→∞

Pv

(
max{X̃N , ỸN} ≤ x

)
= FGUE(x)FGUE(r−1x), (4.43)

where r comes from the ratio between s(cj) and s(cj−1). Now from Lemma 4.2, we obtain

lim
N→∞

Pv (max{XN , YN} ≤ x) = FGUE(x)FGUE(r−1x). (4.44)
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The second equation of Lemma 3.4 we would like to prove can be written as

lim
N→∞

Pv (max {X∗N , Y ∗N} ≤ x) = FGUE(x)FGUE(r−1x). (4.45)

with

X∗N =
Hcj−1(q)− d(q− cj−1)

R−1s(q− cj−1)
, Y ∗N =

Hcj (q)− d(q− cj)

s(q− cj)
. (4.46)

In order to derive (4.45) from (4.44), we note that Lemma 2.1 and Proposition 2.1 imply that

lim
N→∞

Pv (|XN −X∗N | > ε) = 0, lim
N→∞

Pv (|YN − Y ∗N | > ε) = 0 (4.47)

for arbitrary ε > 0. Using the simple inequality,

|max{X∗N , Y ∗N} −max{XN , YN}| ≤ max{|XN −X∗N |, |YN − Y ∗N |}, (4.48)

we obtain that the left hand sides of (4.44) and (4.45) are equal. Thus (4.45) follows.

4.3 Proof of Lemma 3.1

We note that

d(q− c̃i) =
(√

(1− ρ) (t− ρ−1(N − i)) +
√
N − i

)2

+ o(N). (4.49)

As a function of i, its maximum occurs at i = N − ρ2t. Hence if j is not in I, i.e., |j − N + ρ2t| ≥ N/4,

then d(q − c̃j) is less than the maximum of d(q − c̃i), i ∈ I, and the difference is of at least O(N). More

rigorously, we write

ρ · d(q− c̃i) = ρt−
(√

ρ2t− ρ(N − i)−
√

(1− ρ)(N − i)
)2

+ o(N). (4.50)

If N − i = ρ2t+O(1), the above equation equals to ρt+ o(N). On the other hand, if N − i ≤ ρ2t−N/4, we

have

√
ρ2t− ρ(N − i)−

√
(1− ρ)(N − i) ≥

√
ρ2(1− ρ)t+

ρN

4
−
√
ρ2(1− ρ)t− (1− ρ)N

4
(4.51)

which is at least O(N(t+N)−1/2). Therefore we obtain

ρ · d(q− c̃i) ≤ ρ2t− cN2(t+N)−1 + o(N) (4.52)

for some c > 0. Similarly if ρ2t+N/4 ≤ N−i ≤ ρt, we have the same bound (4.52). Note that N2(t+N)−1 ≥
t1/3+ε. By using (4.52) and Lemma 4.1, we obtain Lemma 3.1.

A Density profile of TASEP with periodic step initial condition

In this appendix, we summarize the macroscopic picture of the periodic TASEP and the infinite TASEP

with periodic step initial condition (1.9) via solving the Burger’s equation. We state the density profile,

and the locations of the shock and any given particle as time t without much details since the computation

is standard. Furthermore we do not study the issue of the convergence in the hydrodynamic limit to the

Burger’s solution; the computations in this Appendix are used only to provide intuitive ideas and are not

used in the proofs of the theorems.
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We assume that 0 < ρ ≤ 1
2 . Consider the Burger’s equation for the infinite TASEP

d

dt
q(x; t) +

d

dx
(q(x, t)(1− q(x, t))) = 0 (A.1)

with the periodic initial condition

q(x; 0) =

{
1, −ρ ≤ x− [x]− 1 ≤ 0,

0, 0 < x− [x] < 1− ρ,
(A.2)

where [x] means the largest integer which is less than or equal to x. The entropy solution q(x; t) represents the

local density profile at location xL and time tL. Note that the solution is also periodic, q(x+ 1, t) = q(x, t),

and hence q(x; t) also represents the local density profile for the periodic TASEP with the same initial

condition.

We now solve the above Burger’s equation explicitly. Due to the periodicity, we state the formula of

q(x; t) for x only in an interval of length 1.

For time t ≤ 1
4ρ , there is no shock and the solution is given by the following: For 0 ≤ t ≤ ρ,

q(x; t) =


1, −ρ ≤ x ≤ −t,
1

2
− 1

2t
x, −t < x < t,

0, t ≤ x < 1− ρ.

(A.3)

For ρ ≤ t ≤ 1
4ρ ,

q(x, t) =


1

2
− 1

2t
x, −2

√
ρt+ t ≤ x ≤ t,

0, t < x < −2
√
ρt+ t+ 1.

(A.4)

The shocks are generated at time t = 1
4ρ at the locations 1

4ρ + Z. (In terms of the TASEP, the above

time corresponds to the time 1
4ρL = 1

4ρ2N .) Let us denote by xs(t) the location of the shock of the Burger’s

equation at time t which was initially generated at the location −1 + 1
4ρ , i.e. xs(

1
4ρ ) = −1 + 1

4ρ . One can

find that the shock location is given by

xs(t) = −1

2
+ (1− 2ρ)t (A.5)

and the density profile is given by

q(x; t) =
1

2
− 1

2t
x, xs(t) ≤ x < xs(t) + 1 (A.6)

for all t ≥ 1
4ρ . This shows that the density profile difference at the shock, ∆qs(t) := limx→xs(t)+ q(x; t) −

limx→xs(t)− q(x; t), is given by ∆qs(t) = 1
2t at time t ≥ 1

4ρ . As t→∞, this gap tends to zero and q(x; t)→ ρ

for all x ∈ R. However, the density profile is not yet “flat enough” when t � L1/2 (which corresponds to

the sub-relaxation time scale t� L3/2 in TASEP). Indeed, note that that when t� L1/2, the gap satisfies

∆qs(t) � 1
L1/2 (and the absolute value of the slope of the density profile at continuous points is � 1

L1/2 .)

In terms of the TASEP scale of time and space, ∆qs(t)L � L1/2 � (tL)1/3 which means that the gap is

greater than the KPZ height fluctuations.

Given the formula of the density profile, we can compute the expected location of the [αN ]-th particle

(the one initially located at −N + [αN ]) heuristically. Here α is an arbitrary constant satisfying 0 < α ≤ 1.

This particle meets a shock at the discrete (rescaled by L) times(√
k − α+

√
k + 1− α

)2
4ρ

, k = 1, 2, · · · . (A.7)
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The particles location (rescaled by L) is heuristically given by

Xα(t) = (
√
t−
√

(k + 1− α)ρ)2 − (k + 1− α)ρ+ k,

= t(1− ρ) + (
√
tρ−

√
k + 1− α)2 − (1− ρ)(1− α) +Xα(0)

(A.8)

for time satisfying (√
k − α+

√
k + 1− α

)2
4ρ

≤ t <
(√
k + 1− α+

√
k + 2− α

)2
4ρ

. (A.9)
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