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Abstract

The periodic KPZ fixed point is the conjectural universal limit of the KPZ universality class models
on a ring when both the period and time critically tend to infinity. For the case of the periodic narrow
wedge initial condition, we consider the conditional distribution when the periodic KPZ fixed point is
unusually large at a particular position and time. We prove a conditional limit theorem up to the “pinch-
up” time. When the period is large enough, the result is the same as that for the KPZ fixed point on the
line obtained by Liu and Wang in 2022. We identify the regimes in which the result changes and find
probabilistic descriptions of the limits.

1 Introduction and main results

The KPZ fixed point is a universal two-dimensional random field [I7] to which the height functions of many
random growth models on the line are expected to converge in the large-time limit. Among various properties
found for the KPZ fixed point (see, for example, [7) [T}, 6, 14, [15] 191 [5] and references therein) is the recent
study on conditional distributions when the field is uncharacteristically large at a specific position and time
[16]. This paper aims to study similar conditional distributions for the periodic KPZ fixed point, which
arises as the universal limit for random growth models on a ring. The size of the ring affects the field, and
the interest is to determine the effect of domain size on the conditional distribution. We first review a result
for the “pinched-up” KPZ fixed point and then introduce the periodic KPZ fixed point.

1.1 KPZ fixed point when it is pinched-up

Let H(z,t) denote the KPZ fixed point with the narrow wedge initial condition. Consider the situation when
H(0,1) = L is large. It was shown in [I8] that conditional on H(0,1) = L, the one point distribution of
H(x,t) — L converges to a properly scaled Tracy-Widom distribution for every fixed (z,¢) € R x (1,00) as
L — oo. This is consistent with the intuition that the conditioning makes the shifted height H(z,1) — L
close to the narrow wedge, and thus, from the Markovian property, the pinched-up process after time ¢ = 1
should look again like the KPZ fixed point with the narrow wedge initial condition, starting at ¢t = 1. On
the other hand, for ¢t € (0,1), the following result was proven.

Theorem 1.1 ([I6]). Let H(z,t) be the KPZ fized point with the narrow wedge initial condition. Let By and
Bo be independent Brownian bridges. Then

H(ﬁ,t)—tL
Law ({Ll/4

} ‘ H(0,1) = L) LN e ({Bgr(t) — B () — m|}($’t)eRX(07l)) (1)
(z,t)eRx(0,1)

as L — oo, where L4 Genotes the convergence of finite dimensional distributions, and the conditional law
should be understood as P(- | H(0,1) = L) = lim,o P(- | H(0,1) € (L — ¢, L + ¢)).
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Here, the term “Brownian bridges” means standard Brownian bridges, that is, the duration of time is
1, and they return to 0 at time 1. We use the same convention throughout this paper. We also use the
term “Brownian motion” to refer to a standard Brownian motion which starts at 0. We emphasize that our
Brownian motions and Brownian bridges could be defined on two different metric spaces in this paper, the
real line R or the quotient space I, = R/rZ, where r is a positive number. We will use B, B" to denote the
Brownian motions and Brownian bridges on the real line, and B, B""!" the Brownian motions and Brownian
bridges on I, respectively.

The original formula in [I6] was given in terms of (B"(t) — x) A (BS"(¢) + 2). Here we used the identity
aAb = 3(a+b)— 3|la—b|, and the invariance of the law of two independent Brownian bridges under
orthonormal transformations to rewrite it as the form in .

The KPZ fixed point with the narrow wedge initial condition satisfies the invariance properties

aH(a 2z, a73t) 4 H(z,t) and H(z,t) 4 H(z + pt, t) + % ((z + Bt)* — 2?) (2)

for every a > 0 and 8 € R. Thus, also implies a result when the conditioning is given at a general point
(X,T) instead of (0,1) (see [16, Remark 1.5]):

H(X,T) =L T2, Law ({]B‘z“(t) — By (1) — x’}(x,t)eRx(O,l))

(3)

xT3/4
Lo { H(tX + 2L 4T) — tL

T1/41,1/4 }
(z,t)ERX(0,1)

as L — oo.

The papers [8, Theorem 1.9] and [I0] also considered conditional limit theorems and obtained the first-
order term and concentration results. The result has an implication on the geodesics in the directed
landscape as well. Based on the above result, the authors of [I6] conjectured that conditional on H(0,1) = L
goes to infinity, the geodesic converges to the Brownian bridge. This conjecture was recently proved by [9]
using geometric and probabilistic methods. These results show that the geodesic between (0,0) to (0,1)
typically stays within the distance of order L~/* from the straight line.

1.2 Periodic KPZ fixed point

Let h(n, t) be the height function of the totally asymmetric simple exclusion process (TASEP) on the discrete
ring of size 2a. We identify the ring as the set {—a + 1,--- ,a} and extend the TASEP periodically on the
integers Z by setting h(n %+ 2a,t) = h(n,t). We may call the extended TASEP a periodic TASEP of period
2a. Suppose that initially, h(n,0) = |n| for —a + 1 < n < a and is extended periodically. This initial
condition is called the periodic step initial condition.

An interesting large time limit arises when the period 2a is proportional to ¢2/3, which is called a
relaxation time scale. In this limit, the ring size affects the fluctuations of the height function nontrivially.
It was showrﬂ in [2] that for every positive integer m, for every m distinct points (y;,7;) € R x R and every
m real numbers 5;,i=1,--- ,m,

- T2/3 21, T) — 7
lim P (m {h(%T ,2nT) — 7T < ﬁz}) =Fn(B;7,7) (4)

T=(2a)3/2—0c0 im1 —T1/3

converges, where 8 = (81, - ,fm), T = (71, yTm), and ¥ = (71, ,Ym). The function F,,(8;v,7) is
periodic with the shift v; — 7; 4+ 1 for any 4, and can be extended continuously for (v,7,3) € R™ x R x
R™. The functions F,,, m = 1,2,---, form a consistent collection of multivariate cumulative distribution
functions. See Section and Appendix [A] for the formula and properties of these functions.

n [2], the case when ; # v/, 7 = 7, and B; = B,/ for some i # i’ was not analyzed. See Appendix |A| how we can obtain
the result in this case.



Let H®e) (v, 7), (7,7) € R x Ry, be a process whose law is defined by the collection F,,. It satisfies the
spatial periodicity
HED) (3 4 1,7) = HOD (3, 7).

Since we will only discuss finite-dimensional properties in this paper, we will simply call it the periodic
KPZ fixed point with the periodic narrow wedge initial condition. The limit was also proved for the
discrete-time TASEP [13] and the PushASEP [12] on a ring. The distribution functions F,, are expected
to be the universal limits for the multi-time, multi-position distributions of the KPZ universality class in
the periodic domain at the relaxation time scale. The convergence was also extended to other initial
conditions satisfying some technical assumptions [3]. Since we will only consider the periodic narrow wedge
initial condition case in this paper and leave other initial conditions for future consideration, we will simply
call H®¢") (v, 1) the periodic KPZ fixed point without mentioning the initial condition.

Unlike the KPZ fixed point, the periodic KPZ fixed point does not satisfy the invariance properties (2)).
Instead, it was conjectured in [2] that

e3P (2623 er) — H(v,7) ase—0 (5)
and V3
2 er
W(H(‘D )(’}/7TT)+TT)4)B(T) as T — oo (6)

where B is a Brownian motion. The limit in @ does not depend on 7. The one-point distribution case of
with v = 0 was verified in [4, Theorem 1.6] and the one-point distribution case of @ was proved in [4]
Theorem 1.5].

The process HP¢") has period 1. It is illuminating to consider the general periods. For p > 0, let
Hy(y,7) = p'PHP) (p~ ey, p~ 7). (7)

Then, it satisfies
,Hp('y +p,7) = Hp(% 7) (8)

We call it the p-periodic KPZ fixed point (with the periodic narrow wedge initial condition). The processes
with different parameters are related by the formula

_ : d
PPy (0, p*P7) = Ha(v,7) 9)
for all p > 0. The conjectures and @ are translated to the conjecture on the large period limit
Hp(2y,7) = H(v, 7) as p — 00 (10)

and the conjecture on the small period limit

V2pl/4

/4 (Hp(y,7) +p~'7) = B(7) asp — 0, (11)

both in the sense of convergence in finite-dimensional distributions.

1.3 Results

The goal of this paper is to study the periodic KPZ fixed point when H,(0,1) = ¢ is unusually large. We
obtain the following results up to the “pinch-up” time. We allow the period p vary while ¢ — co. There are
three theorems depending on the value pf*/4. The critical case is when pf'/* = O(1). We call the other two
cases p > O(L~/*) and p < O(£~/4) the case of large period and the case of small period, respectively.



Theorem 1.2 (Large period case). We have

Hp(zl%at) -t
Law ({ﬂl/‘l

} Hp(0,1) = 5) L22, Law ({Bgr(t) — By (t) — x’}(x,t)eRx(oa))
(z,t)ERX(0,1) '

as £ — oo szI
e p and logp < 63/2,

where BY and BY" are independent Brownian bridges.

In order to introduce the limit theorem in the critical period case, we need to define a Brownian bridge
on a periodic domain. For r > 0, let I, = R/rZ be the quotient space of R by rZ. We denote by {z}, the
equivalence class of x € R. Naturally, it satisfies the periodicity {z}, = {« + r},. The distance of two points
{z}, and {y}, of I, is defined as

diste({}r, {y}r) = min |z —y + kr|. (12)
A Brownian motion B’"(t) on I, can be defined from a Brownian motion B(¢) on R by the formula

B" (1) = {B(1)}.. (13)

It is straightforward to see that B'r(t) is a Markov process with the transition density

lim P (dist, (B (£) — {«},) < €| B¥(s) = {y}:) = 6", ({x — y}r)

e—0

for all {x},,{y}, € I, and ordered times s < t, where the function ¢(") is defined by

o (wh) = Y dulo + k), for {a} € I, (14)
k€EZ
and ¢;(z) = —L_¢=% is the density function of the centered Gaussian distribution with variance ¢ > 0.

V2t
A Brownian bridge B*ir(¢) on I, is a Brownian motion on I, conditional on B/ (1) = {0},. Its finite-

dimensional distributions are given by

P <ﬁ {B""(t;) € A¢}> =P <ﬁ {B"(t;) € A;} ‘ Bl (1) = {0}r>

i=1 i=1
for any m > 1, where ¢y, - ,t,, are m distinct times on (0,1), and Ay,---, A, are m open sets in I,.

Theorem 1.3 (Critical period case). Forr > 0, we have

Lo ({H,,(Zm,t) —

i 1,(0,1) = E) Lo T aw ({Bgr(t) — dist, (B‘;“L(t), {x}r>}

}(m,t)E]RX(O,l) (m,t)ERX(O,l))

as £ — oo if

p= r€_1/4,
where B (t) is a Brownian bridge on I, and BY*(t) is a Brownian bridge on R which is independent of
B (1).

2The notations mean that pf/4 — oo and 10gp/€3/2 — 0 as £ — oo.




Theorem 1.4 (Small period case). We have

Hp(gira-t) — fd.d. br
Law ({@/4} Hp(0,1) = £) — Law <{B (t)}(z,t)eRx(0,1)>
(z,t)eRx(0,1)

as £ — oo if

(tlogl < p < 714

where B is a Brownian bridge.

We have several remarks.

~ Hp (=2 ,t)—tl e
Let H,(x,t) := %{7‘;4). The above results should be understood as, for every positive integer m

and real numbers hy,--- , h;_1, the limit

lim P (ﬁp($1,t1) > hh t 7ﬁp(xm—1atm—1) > hpm—1

l— 00

7,(0,1) = e) (15)

exists in each case and is given by the corresponding joint probabilities of the limiting fields in the
theorems. The conditional probability in should be understood as

P (ﬁp(zlvtl) > hla co 7ﬁp(zm—la tm—l) > h’nL—laHp(O7 1) € (f — E,é + 6))
li .
0 P(H,(0,1) € ({ —¢,0+¢€))

In all three cases, the position and the height are scaled the same way as in the KPZ fixed point case
(1), except for multiplicative 2 in the spatial variable (see (10})). The factor 2 is due to the fact that
the periodic KPZ fixed point uses a different convention for the spatial variable compared to the KPZ
fixed point. Similar discrepancy also appears in the equation .

Consider the limiting field of Theorem Note that
1_i>m dist, ({z}r, {y}r) = |z — ¥, 1grg)distr {z}e, {y}r) =0  forz,y eR. (16)

Also note that a Brownian bridge on I, becomes a Brownian bridge on R as r — oo and tends to 0 as
r — 0. Thus, the limiting field in the critical period case interpolates the limiting fields in the other
two cases.

For fixed ¢, the limiting field of Theorems has maximum value B (#) obtained at x = BY* ().
Similarly, for fixed ¢, the limiting field of Theorems has maximum value BY*(¢) obtained at x =
]B%lfr;l'(t). On the other hand, the limiting field of Theorem does not depend on z.

As mentioned at the end of Section[L.I] conditional on H(0,1) = ¢, the geodesic from (0,0) to (0,1) in
the directed landscape stays within a distance of order £~/4 from a straight line as ¢ — co. Since Hy
has the period p, it is natural to conjecture that limit theorems for the periodic KPZ fixed point take
different forms depending on p > ¢=1/% or p <« ¢~/ The results above show that the critical regime
is indeed when p is same order as £~1/4.

In Theorem p is allowed to tend to zero, stay O(1), or tend to infinity as long as it satisfies
p > ("% and logp < ¢3/2. In this case, the limit is exactly same that of the KPZ fixed point
as the KPZ fixed point (except for the factor 2 in the spatial scale). The condition logp < 0312 is a
technical one. We expect that Theorem holds true as long as p > £~'/4, but it is not clear how to
remove this condition from our proof.



e In Theorems [I.3 and the period p necessarily tends to zero. Theorem [I.3] corresponds to the case
when the period and the geodesic interact non-trivially. The condition p > ¢~!log ¢ in theorem is
also a technical one, which may be weakened, but we do not expect that it can be completely removed.

From the scaling property @, the theorems imply similar results when we condition at time 7 instead
of time 1: conditional on that H,(0,7) = ¢,
3/4
’HP(%, tr) —tl
F1/4g1/4

converges to the limit from one of the above three theorems as ¢ — co.

For the case when p = O(1) or p — oo in Theorem it is also interesting to consider the analogous
result conditional on H,(z,1) = £. We expect a result similar to . However, unlike the KPZ fixed
point situation, the periodic KPZ fixed point does not satisfy the invariance properties , and the

result does not directly follow from Theorem This situation will be studied in a separate paper.

1.4 Asymptotics of the one-point density in the right tail regime
The analysis of the paper also yields the following asymptotics.

Theorem 1.5. Let

d
fo(Biy,7) = @P(’Hp(%f) < B) (17)
be the one-point density function of the periodic KPZ fixed point. Then, as { — oo,
L _ape e p—1/4 3/2
5.7¢ " (14 0(1)) if £ < p and logp < £°/°]
T
Fo(6:0,1) = %e—%f”u +o(1)) if p=rt74, (18)
1 _443/2 -1 —1/4
_— 1 1 1 /
4\/%@5/4])6 35 (1 +0(1)) if £ logl < p < £7H%,
where
V2 2
c(r) = 2675'2’“2 =Y Zef%kz. (19)

r
kEZ kEZ

Thus, if (714 <« pand logp < ¢3/2, the asymptotic matches the right tail behavior of the density
function of the GUE Tracy-Widom distribution. For the KPZ fixed point on the line, which is the p = oo case
of the periodic KPZ fixed point, the one-point distribution is given by the GUE Tracy-Widom distribution.

Hence, we expect that the asympotics does not depend on p as long as p > ¢~1/4.

The right tail when p = 1 was previously obtained for the one-point distribution function. The result [4]

Theorem 1.7] shows thatﬂ

1 4,3/2
P (#H1(0,1) > £) = Wmf” (1+0(73/%))  asl— .

The above theorem when p = 1 is consistent with the formal derivative of this result.

3 Asymptotic result was also obtained for P (H1(y,T) > £) for all v, 7.



1.5 Structure of the paper

The proofs of Theorems are based on an analysis of an explicit formula of the multi-time, multi-
position distributions of the periodic KPZ fixed point obtained in [2]. The method is similar to that of [16]
for the KPZ fixed point, but since the formulas for the periodic KPZ fixed point are more complicated, the
analysis is more involved. The other difficulty is to find probabilistic descriptions of the limits of the formulas,
especially for Theorem [1.3] which we first obtain in terms of complicated contour integrals. We guess the
probabilistic interpretations of the formulas and check that they are correct by direct computations.

The explicit formula of the multi-time, multi-position distributions of the periodic KPZ fixed point
involves an integral of a Fredholm determinant. In Section [2] we introduce this formula and show that upon
the conditioning, the integral of some terms of the series expansion of the Fredholm determinant vanishes. We
then state four propositions, Propositions[2.8 and prove Theorems|1.2) assuming these propositions.
We also prove Theorem in this section. Section [3]is a preparatory section where we consider a function
appearing in the distribution formula to compute its limit and obtain several bounds. Section [4is the main
analytic part of the paper. We perform asymptotic analysis and prove Proposition [2.842.10, Proposition
is proved in Section [5| There are two sections in the Appendix. In Appendix [A] we prove for the
exceptional values of parameters that were not treated in [2] and also prove the continuity and consistency
of the distribution functions F,,. Finally, we show in Section [B] that the series formula of the Fredholm
determinant in Section [2]is the same as that of [2].
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2 Proof of theorems

2.1 Set-up

The conditions on p and ¢ in Theorem [1.2H1.4] are
o (Case 1) p>> £~1/4 logp < £3/2, and ¢ — oo,
e (Case 2) p=rl~"*and ¢ — oo,
e (Case 3) £ 'logl < p< ~'/* and £ — oo,

respectively. In the rest of the paper, we will refer these limits as “for Case 1”7, and so on. In each case, we
evaluate the limit of

P (”hl {ﬁp(xi,ti) > h} ‘Hp(o, 1) = e) . (20)

i=1

in . We will also often state that a result holds “eventually” to mean that it holds when the appropriate
parameters are large enough. For example, for Case 3, it means that there are positive constants c;, ¢, c3 > 0
such that the result holds for all £ and p satisfying ¢ > ¢y, p_1€_1/4 > co, and % > c3.

The following result from [I6] shows that when we consider the limit of it is enough to consider the
case when t1,--- ,t,,_1 are all distinct.



Lemma 2.1. [16, Lemma 3.6] Let Y be a random field on R x (0, T) with the property that for every positive
integer d and x1,--- ,xq € R, the cumulative distribution function P (ﬂflzl{Y(xi,ti) < ﬂl}) is continuous
in the variables B; and t; for every 1 < i < d. If a sequence of random fields Y, on R x (0,T) satisfies
(Ya(miyti))i=1,..a = Y (24, t:))i=1,... .a in distribution as n — oo for every d and for every (x;,t;) € R X
(0,7),i=1,---,d, wherety,-- ,td are distinct numbers, then Y, (z,t) — Y (z,t) in the sense of convergence
of finite-dimensional distributions as n — co.

Thus, the convergence for distinct times imply the convergence for arbitrary times if the limit distributions
satisfy a continuity property. The limit fields in Theorems clearly satisfy the continuity properties,
and thus, it is enough to prove the convergence in distribution for distinct times only.

2.2 Formula of the distribution functions

Recall the relation (7)) between H, and H®e™) . When the times are dlstmctl there is an exact formula for
the multi-point dlStI‘lbuthnb of H(W") We state the formula here. We analyze this formula to prove the
theorems.
Let 81, ,Bm be real numbers. Set I;} = [B;,00) and I; = (—oc, ;). Consider m points (y1,71),
s (Ym>Tm) € R x (0,00) satisfying 0 < 71 < -+ < Tp,. The paper [2] obtained formulas for the joint
probabilities

P (7—[(””)(71,7'1) c If[7 . ,H(per)(vm_lﬁm_l) c Ii_l,’;‘—[(p”) (Y, Tm) € I%) (21)

for arbitrary choices of + and — in each place. When all but the last signs are positive, we have (see [2] eq.
(7.17)] and note the relation (7)) between H ") and H,)

P < () (P40 7) 2 B} 1yl ) < Bm}> -G fewna [ e

i=1 “i
where the contours are circles centered at the origin with the radii satisfying 0 < |z1]| < -+ < |zp| < 1. With
z = (21, ,2m), the functions C(z) and D(z) are defined in and below. In Appendix [A] we will

use the case when all signs are negative.
To introduce the function C(z), let Lis(z) denote the polylogarithm function of order s. Then,

_ Bi A (VT Ao (2
m—1 m e /? 1(21)+p3/2 2(24i)

C(Z) _ H Zi H : _ eQB(Z'iazi)_ZB(z'H»lvzi) (23)

Bi i
Zi — Zit1 Sl erl? A1(21+1)+p3/2 Ao (zig1)

o Sk K
Al(z):fi' (2), AQ(Z):—L' (2), B(z,z’):i > o (24)

Li Li
Vor Vor dm e (k+ K)VERR

Here, we set 2,41 = 0 in the expressions.
The function D(z) is a Fredholm determinant. The series formula of it is

D= Y D) (25)

nef0,1

where n! = nilng! - ny,! for n = (ny,--+ ,ny,) and Dy (z) is given below. The formula of Dy,(z) below is
slightly different from that of [2 Lemma 2.10] and we explain in Appendix [Blhow to obtain the formulaﬂ

4The result is also obtained for equal-time case when 7; = 7,11 for some i as long as 3; < Bit1-
5The paper [5] also discusses another Fredholm determinant formula.



For |z| < 1, define the discrete set
—w?/2
L,={w:e =z, Re(w) < 0}. (26)

For n = (ny, -+ ,n,,) and distinct complex numbers 21, - - , 2z, in the punctured unit disk, let

Dn(z) = f[ (1 - Zz‘l)n (1 - Zzl>" > Ho(U,U)Ra(U.0)Ex(U,U)  (27)

i=2 U,UeLZ] x - xLIm

with the functions defined as follows. Let
]. w 2 2
h(w,z) = ——— Liy /o(ze(® ¥)/2)q for Re(w) < 0. 28
(w2) === [ Liv )dy (w) 28)

For U= (UM, ... . UM) and U = (UD,... ,UM) with UD, T e L7, we write the components U =
(- ul))y and U@ = (@, aly)). Then,
Hn(U’U)_HH 2h; (u()) h,+1(u()) hi_1(u ())+2h( (1) higa (@ ()) hi_ 1('u.()) (29)

i=1j=1

where h;(w) := h(w; z;) and ho(w) = hpyy1(w) = 0. Next, for X = (1, -+ ,2,) and Y = (y1,- -+ ,Ya), let

>a _ H1§i<j§a(xj - fcz‘)(yj )
H?,j:l(xi + ;)

K(X;Y) = det < (30)

T; + Y

denote the Cauchy determinant. We have
H H ( ) H K U( z+1) U U(i+1)) (31)
i= 1]171 Ja

with the convention that U©) = U(© = y(m+1) = {j(m+1) — () Finally,

m . _TiTTi—1 34 Vi “/z 12 Bizhioa
E, (U U H H Ez+ ())Ez, ( ) Ez,i(s) — ¢ 8p5/2 s+ s°+ P17z (32)

i=17;,=1

2.3 Derivative of the distribution function

The conditional probability is interpreted as (see (20))

m—1

P( ﬂ {Hp(ves ) = Br}
k=1

i PUOES 007 2 B 0 (i Tn) € (B = €6 + )
=0 P (,Hp(Vma Tm) € (ﬂm — € Bm+ 6))
50— (N2 {Hp (v ) > B} N {Hp(Yms Tm) < Bim})
aﬁ%P (Hp(Ym: Tm) < Bm) .
We now take a derivative of to find a formula for . We have the following result for the numerator.

The denominator is given by the same formula with m = 1. In the result below, compared with , the
sums are only over n € {1,2,---}™, instead of being over n € {0,1,2,---}™. Also, Dy(z) is the same

Hp(’}/ma Tm) = ﬂm)

as Dy(z), except for the extra factor Z;Lml( ut™ 4 u(m)) in the summand. This proof is modeled on a
computation from [16].



Proposition 2.2. Let N={1,2,---}, the set of positive integers. Then,

%P (NP Hy (Vs ) > B} N {Hp (Yms Tm) < B })
: m (34)
Dn(2) Dy (z) dz;
Qm 1/2% %(/h 2m)C nezN:m (nl)2 + C(2) nezN:m ()2 ) Z1;[1 5

where the contours are the circles centered at the origin with radii satisfying 0 < |z1| < -+ < |zm| < 1. The

terms A1(z), C(z), and Dy(z) are defined in , , and , and forn = (ny, - ,ny),

Du(z) = ﬁ (1 - Zz—l)n (1 - Zzl>" 3 Ha(U,U)Ba(U, D) Ea(U,T)  (35)

=2 U,UELlexmeZg;

where

Proof. In the formula , Bm appears in two places. Since

dc 1 dE.(U,U 1 RN (m) L (m
e = el and S = ) Y + i)
j=1
we find that
0
WP (M Ho (ks ) 2 B} O {Hp (Vs ) < B })
Da(2) mw>mm (37)
C
27“ 1/2]{ f< ne{o,;..}m (n!)2 + C(z) ne{o;»}m (n!)2 11;[1 Z;

where the sums are over n € {0,1,---}™. Note the fact that E(U, ﬁ) decays super-exponentially fast as a
variable tends to oo in the sets L, where the rate of decay depends only on |z| € (0,1). Hence the summation
of Dy, and Dy, are uniformly convergent. Thus, we can change the order of the integral with respect to z
and summation over n. Now Lemma below shows that the integral is zero if one of the components of n
is zero. Thus, we obtain the result. O

Recall that the contours for the integral are circles satisfying 0 < |z1] < -+ < |zpm| < 1.

Lemma 2.3. If one of the components of n = (ny,--- ,ny,) is zero, then
" dZi
c+ ¢ A1 (2m)C(2) Du(2) [ | — =0 (38)
i=1 7
and

m

f{ ?{C ) D ( Hd;:o. (39)

7

Proof. The case when m = 1 can be checked directly. Note that in this case Dy(z) = 1, Dy(z) = 0. And the
functions C(z), A1(z1)/z1 are both analytic at z; = 0. These imply the two identities and . Below
we assume that m > 2.

Let n = (n1,--+ ,nyy,) be given and one of the components is zero. Let k be the smallest integer such
that ny = 0. We will show the integrands of both integrals are analytic as a function of z; in the integration
domain, and thus the integrals are zero.

10



We first focus on the integral in . Since ny = 0, the set L7* is empty. Thus, the integrand does not
contain any factor involving U*) and U (k) which depend on z;. If k = 1, the only term that depends on z;
in A1 (2,)C(2)Dn(z) [[1~, L is the factor

i=1 z;

na
L -2 @)+r@®) (1 2\ () 4m As(21)+2B(21) ~2B(22,7).
21 — 29 22

Since |z1] < |22, this function is analytic at z; = 0. This implies the integrand in is analytic in z1
around the origin. Hence holds when k = 1.
If 1 < k < m, the only term that depends on z; in A;(2,)C(2z)Dn(2z) [T, Zi is
1 e E?jfl(hk(ugk_1>)+hk(ﬁ§k_1>))_zzfil+1(hk(u;k+1>)+hk(ﬁ§_z«+1)))
(zr—1 — 2&) (26 — Z41)
Nk—1 MNk41
% (1 _ Pk ) (1 __Fk ) e(Br=Br—1)A1(2k)+(Tk =Tk —1) A2 (2k)+2B(25) —2B(2,2k—1) =2B(2k41,2k)
Zk—1 Zk+1

As a function of zy, it is of the form

(zp — 2—1)™ 12k — 2py1)™ 171 X (a term analytic in |z;| < 1)
Since ng_q > 1, the first factor is analytic in zx. On the other hand, due to the contour conditions, the
second factor is analytic in |zx| < |zx41|. Thus, the whole term is analytic at z;, = 0, and we obtain
when 1 < k <m.
If k = m, the only term that depends on z,, in A;(z,)C(z)Dn(z) []i~, zi is
_ AGm) S e @) (07 D)
Zm (szl - Zm)

% (1 Zm > m 6(,377175711,71)141(Zm)+(7'm77'717,—1)AQ(Zm)+2B(Zm)72B(Zm,mel)'
Zm—1

As a function of z,,, it is of the form

N —1—1 Al(’zm) x (

a term analytic in |z, | < 1)
Zm

(Zm - Zm—l)
Since n,,—1 > 1, the above is analytic at z,, = z;,—1. On the other hand, since A;(0) = 0, the term %
is analytic at z,, = 0. Thus, the integrand in is analytic in z,, within the integration contour. We

obtain .
The proof of is exactly the same as that of when k < m since Dy(z) is the same as Dy(z)

except an extra factor Z?;"’l (u§m) + ﬂ;m)) which does not depend on 2. When k& = m, we have n,, = 0.
This factor 2?21 (u§-m) + a§.’">) = 0 hence the integrand is zero. We still have (39). O

From the above results, we can write the probability in as below.

Definition 2.4. Forz = (21, -+ ,2m) with 0 < |21] < -+ < |2;m| < 1, define
m—1 % — 2 m e%Al(Zi)“r#Az(zi) :
C*(z) = C(z) O : - 2B (2i,2:)=2B(zit 1,2 (40)
];[1 Z5 ];[1 epf}z Al(%ﬂ)"'ﬁl%(ziﬂ)

11



where A1, As, B are given in , and we set zy11 = 0. Define

Di(z) = > Ho(U,U)Ra(U,U)En(U,U),
) U, UeLl} x--xLIm o ) ) (41)
Dy, (z) = Y. Ha(U.U)Ra(U,U)Ea(U.0)

U, UeLl} x - xLZm

where the functions Hy, (U U) Ra(U,U), and Ex(U,U) are defined in 29), (31), and (32)), while the function
Ra(U,U) is defined in . Also define

- [1(1-%) (1—;;)”“’ @

Corollary 2.5. Let N = {1,2,---} and 1 = (1,---,1). Let C*(z), D%(z), and D% (z) be given above with
———

the parameters

ZT; .

T; = ti, Vi = g Bi = til + hitt/4 fori=1,--- m, (43)
where 0 <t; < -+ <tpm_1 <1, 21, ,Zm_1 €ER, hy, -+ hpm_1 ER, and t,,, =1, x,, =0, hyy = 0. Then,
m—1 . ~ A

H(ztm,ti) — il Ppi1+ Ppo+ Ppi+ Py,
P( ) {0y < o) < Dt D St e ()
i=1 ¢ Pii+Pio+Pii+ P
where
(1) ]4 % mg
Pn1= A1(z2m)C*(z) D3 (2)T ,
)1 (27Ti)m 1 Z C ( ) ( ) 1( )]:[ 2
(- jg ]g 153
Pm _ 7 A m LJ D. TO
2= ok e C DT [

EN’"\{l} (45)

b - f e[

neN™\{1}

2.4 Four propositions

We analyze the equation (44)) to prove Theorems 1.4l We will see that the main contributions to the limit

comes from I;’" L for all three Cases. There are four propositions in this subsection. Proposition |2.8/ computes
1,1

the limit of Pm’l. Proposition shows that P,, ; is of a smaller order. Similarly, Proposition shows
that P, and ng are also of smaller orders. Probabilistic interpretations of the limits from Proposition
are obtained in Proposition In the next subsection, we prove the main theorems assuming these
four propositions. The proofs of these propositions are the main analysis of this paper and they are given in
Section [ and [l

All results in this subsection hold uniformly for the parameters in compact subsets of 0 < t; < -+ <
tmo1 <1, (z1, yZm_1) ER™ L ER, (A1, ,hpm_1) € R™! although we do not state this fact explicitly.

We first need some definitions.

12



Definition 2.6. For every vector a = (a1, ,am) of real numbers, we denote

ai, i= ]-7
a; — a;—1, QSZSm.
Definition 2.7. For a = (a1, -+ ,am) € R™ satisfying 0 < a1 < -+ < am and b = (b1, -+ ,by) € R™,
define
)" 1\f Aa;£2—Ab;¢
Seo(a,b aig id 47
b= S [ /Hgl E“.He - des (47)
where the contours are vertical lines, oriented upward, satisfying Re(§1) > --- > Re(&y). For w =
(w1, ,wm) € C™ satisfying 0 < |w1| < -+ < |wy,|, define

Stabiw) = CUERE 5 I TIne e (49

where the sum is over the roots &; of the equations
e~ =y fori=1,--- m. (49)

Let t = (th... 7tm) = (tl,... ,tm_1,1)7 X = (9317... ,-Tm) = (Ila"' ’Im_1,0)7 and h = (hh... ’hm) =
(h1,--+ ,hm—1,0). The first proposition is about P, 1.

Proposition 2.8. We have

Soo(t,h —x)S(t,h + x) for Case 1,
40 é[% - m m
——e3"" P11 — dw; 50
p1/2e 1 }{...j{S,(t,h—x w)S,(t,h + x; w) H H27:;}w_ for Case 2, (50)
i=2 =1 v
and
3
23/265/4]91/26%“ P1 — Seo(2t,2h) for Case 3. (51)

The integral contours for Case 2 are counterclockwise circles satisfying 0 < |wi| < -+ < |wp]-

The formula of Pm,l in contains ﬁl(z), which, from , is a series. The above result is obtained
by showing that after scaling z appropriately, the series converges to an integral for Case 1 and to a series
f9r Case 2. Note that S is an integral while S, is a series. For Case 3, only one term dominates the series
D1 (Z)

The second proposition shows that P, ; is smaller than Pm,l. Note from our assumptions in section
pf — oo for all three Cases.

Proposition 2.9. There is a constant C' > 0 such that

£ 3 pt
e3Pl < Le*% for Case 1 and 2 (52)
pl/2 Pl
and
P/Apt/2e3t2 p | < %e*%e for Case &8 (53)
p
eventually.



The third proposition shows that P, » and Pm,g are small.

Proposition 2.10. There are positive constants § and C such that

4,3 _ 5p3/2 4,2
€3€2Pm’2 < Ce and |e3*?

< e, (54)

Pm,2

eventually for all three Cases.

The fourth and final proposition is a probabilistic interpretation of the limits in Proposition [2.8] The
result was obtainedﬂ in [I6]. Recall the definition of the quotient space I, = R/rZ and Brownian motions
on it, discussed before Theorem [T.3]

M)

Proposition 2.11. Let a,b,c € R™ satisfying 0 < a1 < -+ < am—1 < a,. Recall that ¢1(x) = 21”6737 is
the density function of the centered Gaussian distribution with variance t > 0 and ¢§')({a:},) = kez t(r+

kr) is the transition density function of a Brownian motion on I, at time t, as defined in .
(a) ([16, Lemma 3.4]) We have

So(ab) = P (a(al) > M Blam) = L Blan) = bm) fun () (55)

V2 V2

where B is a Brownian motion.
(b) For every r € (0,00),

j{. . .]{Sr(a,c - b§W)Sr(avC +b’W)H <1 - w;]l) H 2(7:11'?01;

i= i=1

_p (Wﬁl {BQ(ai) — dist, (B{'(ai), {bi}r) > ci} ‘ Ba(am) = Cm, B (am) = {bm},> Barn (Cm) O8) ({bm}r)

i=1

[ V)

(56)

where the contours are circles satisfying 0 < |w1| < -+ < |wy| < 1, and B{' and By are independent
Brownian motions on I, and R, respectively.

2.5 Proof of Theorems and

We now prove the main theorems assuming Proposition In (44), denote Py, .1+ P 2 —Hﬁm’l +Pm’2 =
P, .

Proof of Theorems and[1]} For Case 1, Proposition and imply that

.

3
pme%“ P — Soo(t,h +x) S (t, h — x).

By Proposition n (a), recalling that t,, = 1 and z,, = h,, = 0, we find that

B e ( N {eieo = 222 B = 20 ]Bau) — B} (1) =o>

i=1

_p <mﬂ1 {ﬁmin{B’l(ti) - B+ \2} > hi} ‘ B (1) = BL(1) = 0)

i=1

6We need to set & = —u; in to find the formula (3.6) of [16].
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atb _ |a—b]
2

for independent Brownian motions B} and BY. Using the simple identity min{a, b} = =5 and noting

that By := (B} — B})/v/2 and By := (B + B})/+/2 are two independent Brownian motions, the above limit
is equal to

P(ﬁ{&m%%&m%ﬂﬂzmHBﬂwz&ﬂﬁﬂ>=P<ﬁ{Eﬂm—m?m%mdzmg(W)

for two independent Brownian bridges BY™ and BY*. Theoremthen follows from , , and Lemma
Similarly, for Case 2, Proposition and Proposition (b) imply that 1;—"1"” converges to

P (ﬂﬁl {BQ(ti) — dist, (Bf (t:), {wi},) > hi} |B2(1) = 0,B{(1) = {0},>

=1

_Pp (“hl {Bgr(ti) — dist, (Bllor;fr (t:), {xi}r> > h})

i=1

(58)

where B is a Brownian bridge on I,, and B is a Brownian bridge on R that is independent of B
Theorem follows.

Finally, for Case 3, Proposition and Proposition (a) again show that I;—T converges to
m—1 m—1
P ( N {B(2tz-) > x/ihi} ’8(2) = 0) =P ( N {B>) > m})

i=1 i=1
where B is a Brownian motion and B is a Brownian bridge on [0, 1]. Thus, we obtain Theorem O

Proof of Theorem[1.5 Proposition Lemma and Corollary show that
1 . .
fp(6;0,1) = W(Pl’l +Pio+ Pii+ Pro)

with ¢y = 1, z;y = 0, and ¢; = . Propositions[2.8/2:10| thus imply the result. The equality of the two formula
of ¢(r) is due to the Poisson summation formula, >, ; g(k) = 3,5 (k) with §(t) = [7_g(z)e 2" *"dz,

o0
for suitable functions g. O

We prove Proposition [2.8] [2.9] 2-10] and in Section [4 and [5] In the next section, we prove a limit
and estimates for a key function that appear in the proofs.

3 Preparations

Let a >0,b€ R, c€R, and d > 0. For £ > 0, consider the function from Gy : R — C defined by

= o (E2 Cc— T i {EQ*a :L’g where Tr) = — 2(d+11')
Ge(w) = 3ak ()’ + ( — W)E(@) + 7z (bE(2)* — ab(2)*)  where &(x) T

While proving Proposition and we need to analyze the functions E*¥(s) in . In the
appropriate choice of the variable s, E“*(s) are related to the function G, with particular values of a,b,c,
and d: see . We compute a pointwise limit and uniform bounds of Gy(x) in this section.

(59)
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3.1 Pointwise limit
Lemma 3.1 (Pointwise limit). For every x € R,
Ge(z¢) — 3a(d +iz)? — (c — 2b)(d + ix) (60)

if £ — oo and xy — x. The convergence is uniform for x in a compact subset of R and for (a,b,c,d) in a
compact subset of (0,00) x R x R x [0,00).

Proof. Tt is clear since &(z¢) — —(d + iz). O

3.2 A lemma

The following simple lemma will be used in the next subsection.

Lemma 3.2. Let A > 0. Let r be a solution to the equation r* — 4 = 1. Then, |r| > 1 +

0<A<3and|r|>1+42 if A> 1.

24 .
3(V13+1) if

Proof. Solving a quadratic equation, all solutions satisfy

" (1+\/1+4A)1/2 (1+ 24 )1/2
rl={—m—— = —_— )
2 v1I+4A+1
Note that
14 % for 0 <y <3,
Vi+y >
1+ ? for y > 9/16.
If 0 < A <3, then ﬁ < A <3, whileif A > 1, then Y 1+3A71 > ‘/52_1 > %. Hence,
24
r>14 — Hfo<A<3
Il = 3(VI+4AA+1) 0=
and 12
1 24
>14+ - | ——m———— if A>1.
Irl = 3(\/1+4A+1> =
The result follows by noting that
V13 +1 for 0 < A <3,
VI+4A+1< o
1+V4A+1<4V/A  for A>1.
L]
3.3 Uniform estimates
We find a uniform upper bound of |e%¢(®)| = eRe6e(®)  From its definition, () satisfies the equation
£(x)? .
3/ = 2¢(x) + 2(d + ix). (61)
Thus,
. a
Ge(x) = Gi(z) + 2b(d + ix) where Gy (z) = 3aé(z)? + c¢£(z) — Mf(x)g. (62)
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Consider Gi(z). Note that Gy (z) = — 5% (§(z) — €3/4)% + 3a&(2)63/* — al/? + c&(x). Write

§(x) ,
v —1=—v, +iw,.

where v, > 0 and w, € R. The quadratic equation for £(z) implies that v, and w, satisfy
02— w2 =1+2d073* and vyw, = —xl™3/*4 (63)

Using the first equation, we see that Re((&(x) — £3/4)3) = (—v2 + 3v,w?)09* = (203 — 3v,)0%/* — 6dv, L3/2.
Hence,
Re (G1(z)) = —2a(v? — 1)63/? — (¢ — 6ad)v 03/* + ct?/*. (64)

In order to obtain an upper bound of Re (G1(z)), we need an estimate of v,.

Lemma 3.3. Define
Vg
Op = —(1+2d€*3/4)1/2 - 1. (65)

Then, there is a constant cy > 0 such that if £ > cqg,

2

Oy > ﬁ for |z| < V/303/4
and | |1/2
x 6 3/4

Proof. From (63), v2 satisfies the equation
s, B

A
T

v C where B = 22073/2 and C = 1 + 2d¢—3/4.

Let 7 = C~ /20, and apply Lemmawith A= %. Note that since v, > 0, we have » > 0. Also note that
r =1+ 6,. Thus, Lemma[3.2] implies that

222¢~3/2

50 > for |z| < V/303/4(1 + 2d¢~3/*
T 3(VI3 +1)(1 4 2de-3/4)2 vl < ( )

and
|x‘1/2£73/8

Sy fo > (3/4(1 + 2de—3/%),
= 3V2(1 + 2d03/4)1/2 vl = 67 )

We take ¢ large enough so that 2d0—3/1 < % The result follows by noting that W > 1—10 and
1 1
3v2,/6/5 ~ 5 =
From the definition ,
vy = (142407321 4 6,). (66)

In (64), Re(Gi(x)) is a cubic function of v,. We write the linear term of v, in terms of a linear term d,
using (66). For the cubic term of v,, we note that since (14 x)¢ > 1+ cz for all z > 0 and ¢ > 1,

03 =(1 4 2d073/%3/2(1 4 6,)% > (14 3d0~3/*)(1 4 36,).
Thus, since a > 0 and d > 0, we find that

Re (Gy(x)) < —6a(l + 3d0™3/*)5,03/2 — (¢ — 6ad) (v, — 1)03* < —6ad,0>/? — (¢ — 6ad)(v, — 1)63*  (67)
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Since (1 + 2)'/2 < 1+ }a for all z > 0, we see from that v, < (1+d¢=3/4)(1+4,). Therefore, we find
that
Re (Gy(z)) < (—6a63;£3/2 + e — 6ad|t + |c— 6ad|d) 8, + |c — 6ad|d. (68)

Thus, since a > 0, there is a constant ¢y > 1 such that if £ > ¢y, then
Re (G () < —5al%/%6, + |c — 6ad|d. (69)

Since Re(G(z)) = Re(Gy () + 2bd from (62), (69), and Lemma [3.3] imply the following bound.

Lemma 3.4. Uniformly for (a,b,c,d) in a compact subset of (0,00) x R X R x [0,00), there are constants
C >0 and cg > 0 such that if £ > cg, then

(@] < Ce 57 for |z < /30374 (70)

and
N - 6
5@ < O VI por ] 2 2691, (71)

Corollary 3.5. Let Gy(x) be the function defined in . Uniformly for (a,b,c,d) in a compact subset of
(0,00) X R x R x [0,00), there are constants co > 1, ¢; > 0, and co > 0 such that

1e5¢@)] < ere=2VIEl for allz € R (72)

and for all £ > cy.

Proof. The result follows from Lemma by noting £°/8 > 1 and x? + 1 > +/|z] for all z € R. O

4 Asymptotic analysis

We prove Proposition 2.8} 2.9 and in this section. The proofs are almost uniform for all three cases
except that we need to add the restriction p < ¢5/4 in the proof of Proposition for Case 1. The remaining
situation for Case 1 is handled separately at the end of this section.

4.1 Choice of contours

It is convenient to introduce the notation

r=plt/4, (73)

Note that r — oo for Case 1, r is a constant for Case 2, and r — 0 for Case 3.

The contours for the integrals of are circles around the origin satisfying 0 < |z1] < +-+ < |zm| < 1.
We make the following specific choice of the radii. The choice is the same for all three Cases except in the
last subsection which we change the analysis slightly. Let

p1> > py >0
be real numbers which we keep fixed. We choose the contours as
2 = e—%p—rpﬂ“i‘gi, 0; € (—m, ], (74)

for each 7 = 1,--- ,m. Throughout this section except for the last subsection we assume that z; are
given by the above equation. We write z = (21, , zm).
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4.2 Bound of C*
The function C*(z) is given by the formula . For every a > 0, polylogarithm functions satisfy

[Lia(2)] = Z < Z 2|" < 2]2|  for |z < 1/2. (75)
Thus, if |z| < 1/2, then (see (24]))
1 1
A1(6)] = |- =Liya(a)| < el and |43(2) = |- = Tiga(a)| < o (70
Similarly, for |z|, |2'| < 1/2,
1 &S 2R - o
1B(z,2")| = | — =< = |2*[2F < Jz]12)- (77)
4m k,kz’=1 (k+ k/) kk! 4 kkzl

We find the following bound.

Lemma 4.1. For z given in , there is a constant ¢ > 0 such that

|C’(Z) - 1| < Cgp_l/ze_%pedpflne* 2

for all 0 € (—m, 7™ and £,p > 0 satisfying €p > 2. Furthermore, |C*(z)| < 2 and C*(z) — 1 uniformly in
0 € (—m,w|™ eventually for all three Cases.

Proof. From ([74)), |2 < e=% . If fp > 2, then |z;| < e~! <1/2. From the formula of C*(z), the bounds
and , and the choice of the parameters , we find, using the inequality |e¥ — 1] < |w|e‘w| for all
complex number w, that there is a constant ¢ > 0 so that

C*(@) ~ 1 < e(lp™/ +p72) (3 [l e Hor ORI

i=1

Since fp > 2, we see lp~ /2 4 p=3/2 < %fp_l/Q. Using |z;] < e_%p, we obtain the bound after replacing the
constant ¢ by 32—

Note that Ep_l/ge_%p < W(ﬁp)w%_%’. In all Cases, ¢p > log ¢ — oco. Hence, the term (£p)3/%e~ %
0. For Case 1 and 2, The term (€p4)1/2 is bounded below, and thus, ¢p~1/2e -% —> 0. For Case 3, we have
(~logl < p. Thus, lp~/* <« (lol;% and ¢p > 4log /¢ eventually. Thus, ¢p—1/2e -% < (O o—2logl ().

oz OF
Hence, C*(z) — 1 for all three Cases, which also implies that |C*(z)| < 2 eventually. O

4.3 The functions u;(k)

For |z| < 1, a complex number u is in the discrete set L, = {u: e=* /2 = z, Re(u) < 0} if and only if it is of
the form u = —v/—2log z + 4wik for some k € Z. With in mind, define the function

ui(k) = ui(k; 0;) = —/lp + 2rp; — 2i0; + 4wk, k€ Z (78)
for i =1,---,m, where the branch of the square root is chosen so that Re(u;(k)) < 0. We also define
i) = (k") kD)) for K = (k7o k) € 2 (79)
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Furthermore, we write

Uk) = (ur (kD) - upn (k™)) for k= (kW .. kM) ez =72™ x ... x 2" (80)
form=(ny, - ,nm).
Using these notations, the functions in become
Dy(z)= > sh(kk) and Dp(z)= > sn(kk) (1)
k,kezn k,kezn
with
snlk k) := Ha(U(k), U(k)) Ra(U(k), U(k)) En(U(k), U(k)), (82)
sn(k, k) := Hn(U(k), U(k)) Bn(U(k), U(k)) En(U(k), U(K)),
where by k € Z®, we mean that k = (k) ... k(™) € Zmt x ... x Z"m,
4.4 Bound of H,
The function Hy(U,U) in involves the function
) === [ Tl 2y =~ ) Ly gzt ) 2) 4
’ 27 J—oo / V2T J s /
for Re(w) < 0. From ([7F)), we see that for Re(w) < 0 and |z < 1/2,
Ih(w, 2)] < — /Re(w) 2] ®e) =52, < | (83)
w,z)| < — zle x < |z|.
V2T J_so
Lemma 4.2. For z given in , we have
. o _tp
[ Ha(U(k), U(K)) — 1] < 8nle” Feslnle™* < gjnjethn]
for allm e N™| k, k€ z*, 0 € (—m,w|™, and £,p > 0 satisfying €p > 2. As a consequence,
|Ha(U(k), U(k))| < 5[ne*™.
Proof. Using the inequality |e” — 1| < |w|e/”! and the estimate ,
|Hy (U, U) -1 < 8|n\(1r<na<x |Zi|)68|n|(maX1Si§m lzi) < 4|n|e4\n\
forall U,U € L, x ---x L, _if |z1],- -, [2m| < 1/2. For z given in (™), |z| < e~ F < 1/2 for all 4 if p > 2.
Inserting U = U(k) and U = U(k), we obtain the result. O

4.5 Bound and limits of E,
Recall from and that for n = (n1, -+ ,7m),

m n; 1/4
i Aty 34 Awi o LAt+L / Ay

B 0) = [T [ B0 (0) whore Bi(s) = mfre st 22201

i=17;=1

We compute the limit and bounds of E,(U(k),U(k)) where U(k) is the function from (80). For the limit,
we only need the case when n = 1, and thus we do not state the results when n # 1.
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Define

B (s) = B (s)e s O HARTSHON, (84)
Then,
~ _ 443/ mon A )—203/ AT 7 (1
En(U(k>7 U(k)) e 43/2(M ny AL =203/ (ST ns Ahy) H H o + k( i) Ez, (u ( J( ))) (85)
i=175=1

where u;(k) is the function from (78). When n = 1, since }_/" | Ah; = 0 and Y_;"; At; = 1, this formula
becomes
(U0, U = e #7 T B G (k) 0. (86)

i=1

The function E**(u(k)) is expressible in terms of the function G, from (59). Recall the function &(z)
in , which contains the parameter d. Comparing with the formula of u;, we find that

1 27’(‘]{5791'

ui(k):f\/ép(lfmﬁ( - )) with d = p;. (87)
A direct computation shows that
2nk—6
Bt (uy (k) = & () (8)
with the parameters
At; Ax;
o=t b= 29” c=Ah;, and d=p (89)

Thus, the results from Subsection [3] are applicable.

We first find a limit of Ey(U(k),U(k)). For y = (yi,---,ym) € R™, we use the notation [y| =
([yl}" o 7[?/771])-

Lemma 4.3 (Limit of F),, when n =1). For Case 1, for everyy,y € R™,

By (U([ry]), U([ry]))

N H et (pit2miy;)® —(Ahi—Az;) (pi+2miy;:))+ At (pi+27i9;:)) > — (Ahi+Az;) (pi+2migs)) ) (90)

3/2
1o

i=1

uniformly in 0 € (—m,w|™. For Case 2, for every k, k' € Z™,

i=1
uniformly in 0 € (—m,w|™, where
&i(k) = pi + = (2mik — 16;) (92)
For Case 3, if
0; = ry;

fori=1,--- m, then

483/2E1(U(0) u(0)) — HezAti(pificpi)zszhi(pﬁwi) (93)

i=1

uniformly for o = (o1, ,m) i a compact subset of R™.
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2mk—6; y

Proof. From , it is enough to compute the limits of Eli(uz(k)) =), We use Lemmam From
, d = p;. Recall that r — oo for Case 1, r is a constant for Case 2, and r — 0 for Case 3. Thus, for Case
1

9

27[ry] — 6; 2n[ry] — 0

d+i———— =p; +1i i—)pi+27riy,
r
and hence Lemma [3.1] yields the result (90). For Case 2, d 4 2= = p; +i27E=0: — ¢,(k) and we obtain

(91). For Case 3, with 6; = rip;,
i .
d— 1= =pi —ips.

Thus, we obtain . O]

We now find a uniform bound for Ey,(U(k), U(k)). We start with the following result.

Lemma 4.4. There are constants co > 1, ¢; > 0, and ¢, > 0 such that

2 A o O_ 0 T_9;
‘En(U(k),U(k))‘He%wz”"im‘@“ Schn\HHefk*\/ij — gi|-2cu /1R - & (94)

i=1 i=1j=1

forallneN™ k keZ®, 0 e (=, 7™, and £ > cy. As a consequence,

C 1 Ay B T T e TR | e ST
‘En(U(k), U(k))’ H 64 gA i 03/2 4 om; AR €34 < 0‘1 \ H H e VT |k w/ T1k; |. (95)
i=1 i=1j=1

27k—6;

Proof. Since E"*(u;(k)) = ¢®(+) with the parameters (89), Corollary gives a bound: there are
constants cg > 1, ¢; > 0, and ¢o > 0 such that

2wk —0;
—r

BV (ui (k)| < cre (96)

for all k € Z, 6 € (—m, 7], and £ > ¢g. Thus, from , we obtain the bound where we replaced ¢? by
c1 and cov/ 27 by 2¢,. The bound follows from since

(97)

for every k € Z and 6 € (—n, . O
When n =1, due to , the above result implies the next bound.

Corollary 4.5 (Bound of F,, for n = 1). Suppose n = 1. With the same constants ¢ > 1, ¢; > 0, and
cx > 0 in Lemmal|4.4]

oA El(U(k),U(f{))‘ < cylnHefzc*\/%lkr%lfzc*\/%Ifcr% (98)
i=1
and .
3 | By (), (k)| < e [T eV eV (99)
i=1

forallk,k € Z™, 6 € (=m, 7™, and € > cg.

For the case when n # 1, we have the following estimate. We use the fact that ¢1,--- ,t,,_1 are distinct.
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Corollary 4.6 (Bound of E, for n # 1). Let ¢, > 0 be the constant from Lemma . There are positive
constants cqg, §, and cg such that

e%ﬁ/? En(U(k), U(f()) < 67%5[3/2702‘11'43/2 H H eV %\k;” —Cuy/ %|/%§Z)| (100)
i=1j=1
for allme N™\ {1}, k,k € Z", 0 € (—m, 7|™, and { > c,.

Proof. Since At; are positive constants (recall that t1,--- ,¢,,—1 are distinct) that add up to 1, we find that

. P — PR . > 3 . m .
ZlnlAtz 1+ ;(m DAt > 1+ 1215nm{At7'} for every n € N\ {1}

Let ¢ and 0 be any positive constants satisfying 1 + minj<;<m{At;} = }iﬂi, Then,
(1—c)Y nit; > 144 forallne N™\ {1}, (101)

=1

This inequality implies that

ZniAti >146+ cZniAti > 146+ cln] 1Lnli<n {At;}
<i<m

i=1 i=1

for all n € N™\ {1}. Thus,

m
log <Cn H ewfs/ZQWiAhiég/‘l)
1

i=1

4140 4
< —(7—'_)53/2 — |n|e3/? (c min {At;} — 20734 max |Ah| —£73/%log |cl|) .
3 3 1<i<m 1<i<m

The last parenthesis term is larger than or equal to a positive constant ¢, if £ is large enough. Thus, we
obtain the result from Lemma [£.4] after adjusting the constant co. O

4.6 Bounds and limits of R, and f%n
From ,

1 " A g ,
_— I1 ‘K(U@’ _pD, g _glitn) (102)
i=1j;=1 |Uz‘(kji Jui( 3i ) izo
with U® = uy(k®) and U® = u;(k) and the convention that U©) = J© = yg(m+l) — {lm+1) — ¢,
Recall from that

“ i<j<a\Lj — Li)\Yj — Yi
K(X,Y) — det ( > _ H1§1<j§aa( J )(y] y) (103)
TitYi/)i =1 Hz’,j:l(xi +y;)
for X = (x1, -+ ,2¢) and Y = (Y1, , Ya)-
From the definition , we have a trivial bound
|ui (k)| > /tp (104)

foralli=1,--- ,m and k € Z.
To estimate ((102]), we need the following lemmas.
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Lemma 4.7. For everyi,i =1,--- ,m and k, k' € Z,

|us (k) + uy (k)] > /fp. (105)

Proof. From the definition (78], Re(u;(k)?) > 0 and Re(u;(k )) < 0. Thus, arg( u;(k)) € (—m/4,7/4). Using
polar forms —u;(k) = ce'® and —uy (k') = /¥ for some ¢, > 0 and ¢, ¢’ € (—w/4,7/4), we find that

Jui (k) + ugr (k)] = e+ /€@ =2 > e+ ¢ cos(p — )| > e = ui(k)| > /lp
for all 4,7’ and k, k’. The last inequality is due to (104]). O

Lemma 4.8. We have
k)| < 5/tp + 5v/|k| (106)

foralli=1,...,m, k €Z, and £,p > 0 satisfying (> > 16p} and {p > 1.
Proof. 1f £3 > 16p1, then 2rp; < 2rp; < €p (recall (73)). Thus, (see (78))
lui(B)[* = (bp + 2rp;)? + (4nk — 26;)* < 4(fp)? + (4n|k| + 2m)? < 4(Lp)? + 3272 |k|? + 8x2.

for all §; € (—m, w]. Hence, for fp > 1,

lui (k)] < ((4 4 872)(€p)? + 3272 k[2) /" < (4 + 8724\ /Ip + (320%) /4 /[K].
Since (4 + 872)1/4 2~ 3.01 and (3272)'/* ~ 4.21, we obtain the result. O

Lemma 4.9. (a) For every r >0, a >0 and € > 0,
1 & > 7
~ Z KremVE < / yeVidy, (107)
k= T
(b) Recall that r = £*/*p. For every ¢ > 0 and a > 0, there is a positive constant C' = C(a,€) such that
Z Jui(k)[%e~ VT < C(tp)? (108)
k=—o0
foralli=1,...,m and {,p > 0 satisfying (> > 16pT and {p > 1.
Proof. (a) For k > 1, we have k > ¥1 > £ for all z € [k, k + 1]. Thus,
1 & 1 & At T I 5 > ;
— Z kre—VE < — Z/ 2%V dr = —/ 2l Vi dr = 7“/ y“eiﬁ\/gdy.
raé ré k re Jq 1
k=1 k=1 1
(b) The result (a) implies that

1 = [ oo
a Z |k|a€_6\/E < 0q—0 + 2rB, where B, = / yaefe\/gdy.
ra

k=—o0 0

Hence, if 3 > 16p{ and fp > 1, then (106] implies that

Z u(R)re <V < 50 > (2% (p)*? + 2 k|"?)e” /B < g0 ((Ep)“/Z( +2rBy) + 2r**T' B, /2)

k=—o00 k=—o0

Since 2 > 16p} implies that r < %, the above is bounded by a constant times (¢p)*/?*! if £3 > 16p} and
Ip > 1. We thus obtain the result. O
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Lemma 4.10. For every € > 0, there is a positive constant Cy such that

K(u(1), —u (&) w3 (), —uy (k)| » ST T Coltp)?\ " F
_ / VAIIEEVAT R o SESVAIARVEITAN o(p)? 109
T G T e L H ( ) (109)

for all two distinct integers i and i’ from {0,--- ,m + 1}, n,n’ € N, k.keZ" K.k €Z", and {,p > 0
satisfying 03 > 4p} and lp > 1.

Proof. Since K is a Cauchy determinant ( . the left-hand side of (| is zero if two components of any
of k,k’ k or k' are equal. Thus, it is enough to consider the case that k, k', k or k' all have distinct
components. Let € > 0 be an arbitrary constant.

For vectors X = (x1,-- ,2,) and Y = (y1,---,¥a), and scalars f1,---, f,, the Hadamard’s inequality

implies that
a
det (fp>
TqgtYp/ g p=1

(i), s (s wa(l), —up ()| ot
_ —€ %lkjl e_ezj':l ?‘k”
T i Gep) | T Juag ()] H H
=11 Zmi(kq)w(kp)\ T ZM —uzu»?lumw 1o

K(X;Y) H fp
p=1

Thus,

. f[ z”: e*%W . i o2V TR

o \ o=t L (k) = wahep) [Plus(hp) 12 2= T () + i (k) 2 i (k) |2
Consider the first sum. From and (105)), |u;(k)| > /7 p and |u; (k) + wir (k)] > +/fp. Since we assume
that the components of k are dlstlnct the case a = 0 of (108]) implies that there is a constant C; > 0 so

that
" —2ey/ Fky|
< 22 IR s Y e E LR an
o= [wi(kq) 4 wi(kp) [? |ui(kp )I2 = tp
¢3 > 16p} and ¢p > 1. The same bound holds for the fourth sum. For the second sum, note that Taso b|2 <
% for all complex a,b. Since
|ui(kq)? — wir (k)| = |2rp; +1(—26; + dwky) — 2rpy — i(—20y + 47k),)| > 2r|p; — pir|, (112)
the a = 0 and a = 2 cases of (108) show that there is a constant Cy > 0 such that
o267/ 11K} 1 2y n :
Z < ( +‘U7( )| ) Z(1+|uz (k/)l ) —25./%“%\
[ui(kq) — wir (k) [P ()2 = 202 (ps — pir)2p £
(113)
(At fus(kg)l?) 2 2y 2 /T _ Calp )
< 1 i (k r < 1 i(k
= 2r2(p; — pir)*lp k;oo( * e (B))e < 7 (1 [ulk)l)
if 2 > 16p} and ¢p > 1. The third sum is similar. Hence, the left-hand side of (109) is bounded by
- e/ Tk " 1 k’ Cl C2€P Cl 02529
[[e Vi eV [H 2P (14 il H 2P0t e B)P)| - (114)
j=1 j=1 =
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ALl _ 9,/ Rl . o
From (106)), since e V' < 1 and e 2V - L’:' < max{ze 2" : > 0} < oo, with additional constants C
and Cy,

2
2e\/TTky] [ C1  Calp ] Cy | Colp  C3(fp)*  Culp 1
VIR (L4 S04 ) ) < 4 Sy DD S (115)
Since ¢3 > 16p] implies that 27” > 2p1, there is a positive constant Cy so that the right-side of (115)) is

bounded by €22 if 3 > 16pt and ¢p > 1. Hence, (TT4) is bounded by (Cel2)(m+n")/2 O

Corollary 4.11 (Bound of R,, and ﬁn) For every € > 0, there is a positive constant Cy such that

In|] m n; _ _
: Co(tp)? e/ 21K [ 2¢y /170D
|Rn(U(k),U(k))| S ( r2 HH 2 r‘ J [+2 rI J ‘ (116)
i=1j=1
and il
. . Coltp)> \™ o & FITO) 150
(U9 U(R))| < Inlep)/2 (O ) T T etV o/ (117)
i=1j=1

for allm e N™| k,k € Z*, and {,p > 0 satisfying (> > 16pT and {p > 1.
Proof. The bound (116)) follows by inserting the estimate (109) in the formula ([102). For the bound (117),
we need to modify the argument a little bit. Recall that Ry, (U(k), U(k)) is equal to Ry(U(k),U(k)) times
the sum Z?:l(um(k§m)) + um(l;:](-m))) . We may assume that k;m) are distinct for 1 < j < n,,, and k](m
are also distinct since otherwise the left-hand side is zero. Using the lower bound |u;(k)| < 5v/7p + 5vk in

(£0g),

f(umw)) + um(K™))
g (118)

J=1 j=1 j=1

Note that the maximum of the function /ze~V®/" over x € [0,00] is Cy/r. Here C is a positive constant.
Also note that 2p;r < fp by our assumption ¢3 > 16p. Hence the left hand side of (118) is bounded by a

‘ TGN EATIG)
constant times [n||¢p|*/2 T2, T}, eé\/ilkif|+€ rI%°1 Combining with the estimate (16) and adjusting
the € value accordingly we obtain (117)). O

The exponential bounds of Corollary are enough for n # 1. However, for n = 1, we need a stronger
estimate. In the next lemma, we obtain a polynomial bound in this case. Note that when n = 1, the product
formula of the Cauchy determinant implies that

m
A uz"'uz 1 uz"'ui 1)

mUY) = mH (ug + ;) 2u uZH wi — ui—1) (U — U;i—1) (119)

i:2

and ]321(U, U)Az (U + G )Ry (U, U). We insert U = U(k) and U = U(k) where k = (k1,- - , k) € N™ and
k= (k1 - km) e N™.

Lemma 4.12 (Bound of R,, and Ry for n = 1). There is a polynomial P of 2m variables such that

()™ Ry (U0, V()| < [P, 5)] amd (6p)2™ | Ry (U(K), V()| < [P(X, %))

for allk,k € Z™, 0 € (—m, 7)™, and {,p satisfying 3 > 16p* and €p > 1.
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Proof. Recall the trivial bound |u;(k)| > /fp from for all i and k and the bound from ) that
lu; (k) + ui (k") > /Cp for all 4,7 and k,k’. The bound 106)) implies that

|ui<k|<5f<1+f><5f<l+\/7lr>

if £ > 16p] and fp > 1. On the other hand, since [u; (k)? —uir (K')?[ = |2rp; +1(=20; +27k) — 2rp;s —i(—20; +
2rk’)| > 2r|p; — pir|, we have

L | sl we () | usl)] + e ) (120)
ui(k) — uy (k') u; (k)2 — ugr (k)3 2r|pi — pirl
for all k, k' € N, and ¢ # ¢'. Inserting these estimates into (119)), we obtain the desired inequalities. O

The proof shows that we also have the bound given by P ( I ep) For a later convenience, we replaced

it by a less precise bound P(7, 7).

We also need pointwise limits of Ry, when n = 1.

Lemma 4.13 (Limit of R, forn = 1). For Case 1, for everyy,y € R™,

m

. 1
—1)™=12(0p)3 2™ 2 Ry (U([ry]), U([r9])) — , . — —
- ) 1 (U(0ry]), V(D) s (pi + 2miy; — pi—1 — 2miy;—1)(ps + 27miG; — pi—1 — 2migi—1)
(121)
uniformly for 0 € (—m,w|™. For Case 2, for every k. k e Z",
. " 1
(=)™ 12(0p)3/ 2P 2 Ry (U(K) . . (122)
1:[ (ki) — &i—1(ki—1)) (& (ki) — &i—1(ki—1))
uniformly for 0 € (—m, 7™, where & (k) = p; + (27ik —i6;) as in (92)). For Case 3, if
ei:rvia i:17"'7m,
then
i 1
-1 m—12 ¢ 3/2 2m— 2R _> i 123
(1™ 12(tp) 0000 ] (123)

uniformly for ¢ is a compact subset of R™.

Proof. From the definition of u;(k),

9 1/2
wi(k) = —/lp + 2rp; — 2i6; + 4zik = —\/lp + 2r&; (k) = —/Ip (1 + E;)g,-(k))

using £(k) = p; + +(2mik — i6;). Hence, for every k,

wi(k) = —/Tp (1 10 (531/4»

uniformly in 0; € (—m, w]. Also for every i # ¢/ and k, &/,

1 ui(k) + ug (k) __2\/@(1_‘_0(@31/4))

wi(k) — (k) wi(k)? —uy (K1) 20(&(k) — & (K))
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uniformly in 6;,0y € (—=,7]. Inserting them into Ry (U(k), U(K’)) using the formula (T19)), we find that for

every k. k' € Z,
1
(10 (@)

(124)

1
(&i(ki) = &im1(kiz1))(&i(K]) — Eim1 (K] 1))

s

(=)™ 12(6p)* P2 Ry (U(K), U(K')) =

=2

uniformly for § € (—m,w|™. The result (124) implies (122)) for Case 2. For Case 1, we have r — oo, and
thus,

—i6; + 2mi[ry .
ulll) = po+ "2 o oy
for every y € R. Hence, (124)) implies (121)). If 8; = rep;, then
—i0; .
§i(0) = pi + —— = pi — ips.

Thus, ([123) follows from (124) after inserting k = k = 0. O
4.7 Proof of Proposition
We analyze

Py = (-1)m? / C*(z)D3(2)T5 (z) ﬁ 40 (125)

: A 1(Z2)4; o

where z; = e*%p*m#i(%, 0; € (—m, 7], as given in recall . From when n =1,

. m Zic1 m e~ fPi—1+ibi 1

1=2 =2

Since p1 > -+ > ppy > 0, we find

T3 (z)] < 2™. (127)
Recall from that
DI (z) = Z 51(k, f{) (128)
k,kezm

where 83(k, k') = Hy(U(k), U(k))R1(U(k), U(k))E;(U(k),U(k)). Lemma Corollary and Lemma
imply that there are constants ¢y > 1, ¢, > 0 and a polynomial P of 2m variables such that

- k k L
()2 =263 [ e ) < [P (X, X [T eV eV (129)
i=1

for allk, k € Z™, 0 € (—m,m]™, and £,p > 0 satisfying ¢ > ¢y and fp > 2.

4.7.1 Case 2

For Case 2, r = (*/*p is a constant. Thus, the right-hand side of (129) gives a uniform upper bound,
independent of ¢ and p, that is summable. Therefore, by the dominated convergence theorem, Lemma
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and equations and (122)) imply that

4 443/2 A 1
—1)m L= (0p)*/2e5 Dy( i i
1" ZH e O )~ &)

« H eAti&i(ki))? —(Ahi—Awi)E; (ki) H eAtiki(ki)? —(Ahi+Az:)E; (ki)
i=1 i=1

uniformly for § € (—m,7]™. Furthermore, the left-hand side is uniformly bounded in ¢,p,f. The limit
factorizes to the product of two series, and we find from Definition 2.7] that it is equal to

S.(t,h —x;w)S,(t,h +x;w) where w; = e %, (130)

~ Consider the limit of ( (125). Lemma [4.1] shows that C*(z) — 1 uniformly in 6. Thus, the above limit for
D3 (z) implies that

4 43/2 A m e (rpi—1—i0;_1) 16
r—z(ﬁp)3/2egf Pni1— Sr(t,h — x; w)S,(t,h + x;w) H <1 -

(=™ i=2 i=1

where w; = e~"#+1%  Changing the variables 6; to w;, this proves Proposition for Case 2.

4.7.2 Casel

For Case 1, we write the series (128) as an integral of a piecewise constant function,

/ " / ydydy = r*" / i / 3 (Iry), [r9))dydy- (131)

Consider the bound (129)) and insert [ry;] for k; and [ry;] for k.. Since r — oo for Case 1, we may assume
that r > 1. Then
il _ i)

2 =
Thus, the estimate (|129)) implies an r-independent upper bound,

<2yl for [yl = 2.

(92m=2e 5# (ry), 19D < By, y ) [V 5oV E
i=1

where 15(y7 ") is a polynomial of y,y’ € R™ that does not depend on r and . Therefore, the dominated
convergence theorem, Lemma and equations (121)) and (90)) imply

4

(~1)mt 2<e )¥/2e34 D3 (2)

1
R S
m Jrm s (pi + 2miy; — pim1 — 2miyi—1) (pi + 2wy — pio1 — 27iy;_y)

m
. . 12/ 27 PR . . 127 . . syl 27 . . . syl
% H At (pi+2miy; ) —(Ah;—Ax;) (p; +2miy;) HeAtl(pl+27lei) (Ahﬁ»Azl)(p1+2771yi)dydy/'

=1 i=1

Note that the y-integrals and the y’-integrals factorize. Changing the variables p; 4+ 27iy; = &;, the y-integral
is equal to (—1)™ 1S, (t,h—x)/v/2 of Deﬁnition Similarly, the y’-integral is equal to (—1)™~1S(t,h+
x)/v/2. Note that the order of the contours comes from condition p; > -+ > p,,. Thus,

(—1)m*1%(ep)?’/ze%fs”n'(e) — Soo(t,h — X)Seo(t,h + x) (132)
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uniformly for 6 € (—m, 7]™, and the limit does not depend on 6.
From Lemma H C" ) — 1 uniformly in 6. On the other hand, since r — oo for Case 1,

i mn —rpi—1+if;—1
. Zi—1 (&

=2 =2

uniformly in 6 as well. Thus,

4
ﬁ(ﬁp)3/26%£3/2pm’1 — S (b,h — X)Sao (b, h + x).
This proves Proposition 2.8 for Case 1.

4.7.3 Case 3
For Case 3, r — 0. We change the variables 6; = rp; so that (125)) becomes

m m

Pm,1=(—1)’"‘1ﬁ - C'(z)D;(z)T;(z)1‘[11(_%](301-)(1% 2 = e~ Foreitrien (133)
Write
2 B = Y [ Qleikck Hd“‘” (134)
kkEZ'"
where .
Qi k k) = 201 (= 1)1 (1p)* 2638 O (283 (k, K) T3 (2) [ [ 1 2. 21 (02). (135)
i=1

By Lemmau C*(z) — 1 umformly as { — oo and £p > log ¢. Thus, we may assume that |C*(z)| < 2.
For the term T (z), the estimate is not enough for Case 3. We need a better estimate. For every
p e R™,

T e Pi—1Firpi_1 m— . : i
r7177 1 = m—1 H ( —rpq,-i-irgoz:) = (=1) ! H(pz —ip; — pic1 +ipio1). (136)
1=2

Since |1 — e¥| < |w| for complex numbers w satistfying Re(w) < 0, we also see that

|Tl'(z)|<ﬁ|- —pi—ilpi1 — i) forall p € R™ 137
rmfl ~ Pi—1 Pi Yi—1 (V223 ¥ . ( )
=2
Thus,
|T1 " 2T\ m—-1
e H <(p—pmt7) (138)

since p; > -+ > py,. Using the estimate (129) for 33 (k, k), we find that

(139)

r’r

2T m— kf{ - I i m
Qb <100+ 28 T B

for all p € R™.
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For the sum over (k, 1A<) #(0,0) in , we find, after integrating over ¢;s, that

Z / |Hd%

(k,k)ez2m\{(0,0)}

2 2m\ " k Ky 1 o /B, JEL

4(01—Pm+1) (f) Z |P(?a?)|H€ A
k,kezm\{(0,0)} i=1

Recall that r — 0 for Case 3. Lemma (a) implies that for any non-negative integer ¢, there is a constant
C} > 0 such that

/ Cx
5 (m)ze*‘?*\/‘*’f' ggr/ \fdy< — 1/2 ~ Vs
r 1 r

keZ\{0} v

and

=1 /2
kez

for all small enough r > 0. Therefore, there are a positive constant C' and a non-negative integer n so that

> [ w,kk|Hd%<—e &,

(k,k)€22m\{(0,0)}

Thus, the series tends to 0 as r — 0.
We now consider the term for k = k = 0 in (I34), [5.. Q:(¢;0,0)T[", $2¢. In the derivation of (129),
we used (99). We now use the bound (98] instead to find

k. 19 T
AT ) e |5 k) < [P () [T e vk R (140)
Thus, when k = k = 0, there is a constant C' > 0 such that
P22 (gp)3/26 407 1530, 0)| < CHe VEVled, (141)

=1

Using this estimate in (135]), and also using (137)) and the fact that |C*(z)| < 2,

Adcx

‘Q(¢’00|<4CH|pZ 1_p1_1(501 1= ¥ |H6 Var |<p,|

=2 i=1

Since the upper bound is absolutely integrable and does not depend on ¢, p, we can apply the dominated con-
verge theorem to evaluate the integral of @Q,(¢; 0, 0). Recall §3(0,0) = H;1(U(0),U(0))R;1(U(0),U(0))E1(U(0),U(0))

in . Lemma implies that Hy(U(0),U(0)) — 1. Thus, , 1123)), and (136]) imply, also using
C*(z) — 1, that

rdei (D)™t / 1 2t (pi—ipi)? —
(£:0,0 LN (pi—ip:)® =28k (pi—ip;) d
/Rm Q (‘P ) H 27 27T H pz 1901 Pi—1 + 1902 1 H H o

i=1 i=1

The limit is Sa(2t,2h)/v/2 in Definition
Combining all together, we conclude that Q—‘rﬁ(ép)ig/%%ég/sz’ml — Seo(2t,2h). Thus, we proved Propo-
sition 2.8 for Case 3.
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4.8 Proof of Proposition

The formula of P, ; and J-Ajm’l are similar:

Prs= S fo f e @pi@ri [ £

i=1 7

and

?

Py = co 2m }{ jf0° (z)i]:‘l[1 d;

In the previous section on the analysis of Pm717 all upper bounds were obtained from absolute value estimates.
In P, 1, there is an additional decay factor due to (see (76))

£
A1 (zn)| < Jzm| < 7

and the fact that £p — oo for all three Cases. Furthermore, the term Dq(z) involves R (U(k), U(k)) while
D1 (z) contains R$(U(k),U(k)). By Lemma we find that an estimate of R} (U(k),U(k)) is the W
times the estimate of &3(U(k), U(k)). Thus, in all estimates obtained in the last sections for D;(z), we can
multiply W to obtain an estimate for D (z). Due to these two factors, since | Py, 1| is uniformly bounded

Lp

in all three cases, we find that |P,, 1| is of order 2 )12/2 is all three cases. This proves Proposition

4.9 Proof of Proposition when p < (°/4

We prove Proposition for Case 2 and 3 as well as Case 1 under the extra assumption that p < ¢°/% in
this section and prove remaining part of Case 1 in the next section. The assumption p < £5/4 will be used
only when we 31mphfy at the very end of the analysis.

Recall (81) and (| . Lemma 2, Corollary 4.6, and Corollary [4.11f imply a bound for s%(k, k) and
s (k, k) Let ¢« > 0 be the constant from Lemma 4] that appears in Corollary |4 When applying
Corollary ‘ we use the constant € = S-. Thus, we ﬁnd that there are positive constants Co, C2, Cx, 0 and
Cy such that

n mon
6%53/2|S:1(k, lA{)| < 5|n|e4\n| (Co(é ) > —%[3/2702|n|53/2HH6*% %|k,§‘)|*% %|k_§)| (142)

r2 e
i=175=1

for all n € N™\ {1}, k,k € Z*, 0 € (—m, 7)™, and L,T > 0 satisfying £ > ¢o and fp > 2. Wealsohavea
similar estimate for 9 (k k) where we need to multiply [n|¢p due to the dlfference between ) and (116).

Consider the series which are sums over k,k € Z". Since s%(k, k) = 8% (k,k) = 0 if two components
of any one of ky, - - ,k:m, kl, c++, km are equal (due to the Cauchy determmants in Ry (k, k)) it is enough to
take sums over indices of distinct components. Thus, noting /", n; = |n,

2|n|
: Coltp)2\ ™ 1 ‘ B
6%53/2D;1(Z) < 5|n|e4‘“‘ <O(r2p)) e*%fd/zfcrz\nwﬂ? Z % r '

k=—o0

The sum can be estimated using the a = 0 case of ((108)), and we find that
4\ Inl
r

where the constant C is modified from the last equation. We also have a similar estimate for D2 (z) where
we need to multiply |n|ép.
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From ,

ELUWPELS (111!)2/(_m]m|A1(zm)c-(z)D;(z)T;(z)IHC;i’}

neNm\{1} i=1

o307 P 1 *(z)D(z
BTN SIC Y N S OLOFHE)

neN™\{1}

where z; = e~ #-"Piti%i By (@6), [A1(zm)| < |zm| < 1. By Lemma |C*(z)] < 2 for all three Cases
eventually. Using the formula of z;, since p; > -+ > p,,,, we see that satisfies

m o ng - n;—1—1
(=) (o)
i—9 Zi Zi—1

where ¢ = max{p;—1 — p; : 2 < i < m} > 0. Note that this estimate contains an exponential function and
is very loose but it is sufficient when we assume that p < £5/4.
Thus, with a new positive constant Cj,

n]
7 p —4543/2 In| (Co(tp)* 'r|n| ,—cz|n|€3/?
e3Pl <e” @ > ( = ecrnle=czlnlt™, (145)

1)\2
ey O

Since we assume that p < £°/4, we have r = pf!/* < £3/2 and (¢p)*/r? = p*7/? < (5. Recall that £ — oo
for all three Cases. Thus the sum on the right hand side of (145) is convergent and uniformly bounded for all
three cases. Note that pf/z < 03/ since ¢p — oo. This proves first result of Proposition m An estimate
of Pm72 is similar; the summand in (145)) is multiplied by |n|¢p. This change does not affect the proof much
and we obtain the second result of Proposition [2.10

T5(2)] =

< Hzm(l + 6r(Pi71*Pi))ni71 < 22|ﬂ\65/'|n\ (144)
=2

4.10 Proof of Proposition [2.10| when p > /¢

Case 1 is when £71/* < p and logp < £3/2. We prove Proposition for Case 1 when p < ¢°/* does not
hold. The proof given here applies to the situation when p and ¢ satisfy p > ¢ and logp < ¢3/2. Note that
we have £ and r both tend to infinity in this case.

The main reason that we added the assumption p < £5/4 in the last section is the factor el in
which comes from the estimate of [T (z)| < 22nlec’rnl Iy order to improve this estimate, we modify
the integral contours. In , the contours were chosen as

__ o i,
z; = e 3 reitifs 0; € (—m, 7],

where p; > -+ > p,, > 0 were fixed numbers. In this section, we choose these numbers to be dependent on
r:
i—1
r
for 1 < i < m, where p; is a a fixed positive number. With this change, the estimate is changed to

T3 (2)] < 2™l (147)

pi =p1— (146)

The difference is that the exponent is changed from c’rjn| to ¢/|n|, which gives a much tighter bound.
However, we need to check how other quantities in the estimate change due to the contour changes.

The estimates in Sections [£.2] and [£:4] are still valid without any change. For the estimates in Section [
note that d = p; = p; — Z% Wthh depends on r but is close to the constant p;. Since Corollary . holds
uniformly on d, Lemma [4.4] and Corollary [4.6] still hold. However, the estimates in Section need some
changes.

Lemma is changed to the following estimate.
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Lemma 4.14. For every € > 0, there is a positive constant Cy such that
K (u;(k), —ug (K); Ui(f{) —uy (k')
T fuws () | T i (5)]

for all two distinct integers i and i’ from {0,--- ,m + 1}, n,n’ € N, k.keZ" K.,k €Z", and {,p > 0
satisfying 03 > 4p} and lp > 1.

H eV “/'THG*\/I'T ViR ¢ o (148)

Proof. Recall that it is enough to consider the case when k, k’, 1A<, or k’ all have distinct components. In the
proof of Lemma the estimates (110 and (111)) still hold. However, we need to change the estimate
Since the components of k;, are all distinct, we have

— Ju;(k —Ufkf’)|2|uz (k) - ) — wir (kp)[*|usr (k)[* — wi(kq) — wir (k)P uy (K')]?

= k'€Z

We split the last sum into two parts. The first part contains all k' satisfying |u;(kq) — wi (K')| > |uy (K')].
This part is bounded by, recalling the definition of u; (k') in ,

1 1
%: [ugr (K| ; (lp +2rpy)? + (4Tk! — 20;/)2 — kZ:EZ 1+ (4mk’ — 20;)? (150)

which is uniformly bounded by a constant. The second part of the sum contains all k" satisfying |u;(kq) —
uy (k") < |uy (E')|. Noting the fact that |u;(kq) + wir (B')] < |wi(kq) — wer (K')] + 2|ui ()] < 3wy (K')], this
part is bounded by

|uz + (Y (
151
Z |(ui(k u/(k’)) |2 \u/ (]2 — Z | (u; (k (ul/(k’))QP (151)
which is uniformly bounded by a constant since ¢ # ¢’ and

|(uikq))? — (uir (K)?? = 4r*(p; — pir)? + (47 (kg — k') + 2(01 — 0;))?

152
=4(i — ") + (47 (kg — k') +2(0: — 6;))? (152)
by our choices of p; and p;;. Combing the above two parts, we obtain
—26 l\k’\
<. 153
Z|u, ) — wyr (k) 2w (K2~ 2 (153)
which implies that the bound ([114)) changes to
T eI T V250 [T, [C . /C
IIe ITe i [H o O 11 PREIE (154)
J=1 J=1 q=1 qg=1
We thus obtain (148)). O

Using the above bound instead of Lemma the same proof shows that Corollary changes to the
following.

Corollary 4.15. For every € > 0, there is a positive constant Cy such that

|Ra(U(k), U(K))| < G T T 2V I8 2/ o1 (155)

i=1j=1
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and
| B (U(K), U(K))] < [n](p) /20 T T 2V P18 eV HR (156)

i=1j=1
for alln € N™, k,lA< €7Z™, and £,p > 0 satisfying (> > 16pT and fp > 1.

We are ready to prove Proposition for Case 1 assuming p > ¢ and log p < £3/2. We follow the same
analysis of subsection except that we replace Corollary by Corollary and the inequality (144))
by (147)). Then the inequality (142) is replaced by

m. N - =
3% sn (k, k)| < Blnfetlinlople=H ¢ mealnlt S TT T e VIR 1= 5 VoI (157)

i=1j=1

and the inequality (143]) is changed to
=¥ /2D:1(Z) < 5|n| (Co(fpf)lnl e—%&€3/2—02|n\€3/2' (158)

For the bounds of 5% (k, k)| and D2 (z), we only need to multiply the bounds of |s®(k, k)| and D2 (z) by a
factor |n|(¢p)'/? due to Corollary Finally, using (147)), the inequality (145]) changes to

_ 48 43/2 n In| c'|n| —ca|n|e3/2
Ppal e300 37 (Lv)|z (Co(tp)?)!™! e/l e=calmlé®’” (159)
nerm 13 (%

403/2

les

The sum is uniformly bounded provided p < o2’/ 2 which holds since logp < £3/2. This proves the first
part of Proposition The proof of the second part on P, 2 is similar.

5 Proof of Proposition 2.11

We first prove Proposition m (a). We have the following lemma.

Lemma 5.1. Leta € R™ satisfy 0 < a1 < -+ < am-1 < @y, and let b € R™. Then, for every r > 0,

ym— 1./2 1— 6T(51 §i—1) M A
alg —Ab; Eld
2m e / H st 1 G S

! (160)

b,
= ]P (\/§B(CL1) — bl c [0,7’)7 s, \/iB(am_l) — bm_l S [O,T) | \@B(am) = bm) d)am (\/i)
where the contours are distinct vertical lines oriented upwards, B is a standard Brownian motion, and

z?
27 |

$r(x) = e

Proof. From Gaussian integrals,

S
Aaiff—Ayifid - e 0w — L ) (Ayl>
L gz Z1;[1 /727TACLZ‘ };[1 \/§¢Aa¢ \/§

for every y € R™. The right hand side is the joint density of (B(ay),---,B(am)) at (y1/v2, + ,ym/V?2).
The equation (160)) follows by integrating y; from b; to b; +r for i = 1,--- ;m — 1 and taking y,, = b,,. O
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If the contours are ordered as Re(§1) > --- > Re(&,,), then the left hand-side of (160) converges, as

r — 400, to

ml\[ €2 .
S [ g s

Thus, Proposition (a) follows. This computation is due to [16, Lemma 3.4].

We now prove Proposition (b).
Proof of Proposition (b). Denote the left-side of by

w w
i= v i=1

where the contours are circles satisfying 0 < |wi| < -+ < |wy,| < 1 and (recall ([48))

m

. (=)™ 'V2 L 17 .2ae-abe,
Sr(a;b,w) == pm Z Hgl _gi_l He v .
€1 b 122

(161)

Since the sum is over the points &; satisfying e "¢ = w;, we see that [/, (1 - w“‘) =11, (1 - e'(&"&*l)) .

w;
Thus, we can write A as

dw;

b;w)T(a,c + b;w) [ |

=1 i

where
1_er(§1 fz 1) i

Aa;&l—Ab; i
e
57 1 ll_[

1

Ti(a,b;w) = ( " 1\/> Z H

y€m 1=2

(162)

(163)

Let 0 < |w| < 1. Note that if f(£) is a function that is analytic in a vertical strip p — 2§ < Re(§) < p+ 26

for some § > 0, where p = _log|w]

theorem,

L[ —rwf(©) o 1 [T —rwf(€)
S @=gg [ e [ e

frortew 27‘(1 p+5—ico 2mi —Jd—ioco

Thus for such f, we find, using the geometric series and moving the contours, that

Z Uy 2771 Z wk f(©e e

Ee=w p+HR

with the contour oriented upwards. Extending the above formula in a natural way, we find that

(_1)m71\/§ m m 1 m o . murts
Stobi) = o 3 g | - /HaalnAgAM s

nezm =
and
()" 'V2 Z 1—er&imn) & pDait?—Ab;
Tr b = a1§ 51 nlrfzd
(a’ ’W) (27Ti)m — n1 . nm H zl_[l 5
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, and decays fast as Im(§) — £oo in the strip, then by the Cauchy residue

(164)

(165)



where the contours are vertical lines, oriented upwards, satisfying Re(§;) > --- > Re(&y). The ordering of
the contours follows from |wy| < -+ < |wp,].

Change the summation index n to k by setting n; = ky +---+ k; for i = 1,--- ;m so that k; = An;
(where ng := 0.) Using Lemma with b; replaced by b; + rk; and ¢; replaced by ¢; + rk;, we find that

P (N (V2B (a:) = bi > thi} | V2B () = by + thin ) @, (L)

wlAkl e w,’%km

Se(a,b;w) = Z

kezm

(166)

and

P (N {V2B) (@) = b € ki, (ks + 1)} | VB (@) = o + i) b, ()

T.(a,b;w) = Z
kezm
(167)
where B} and BY are independent Brownian motions.
Inserting the above formulas into and computing the integrals, we obtain

m—1
Cm — by, — ko,
A=3"P ( ({V2B)(a;) — ci +b; > —rk;} ‘ V2B () — ¢ + b = —rkm> qﬁam(—\/?
=1

kezZm
Cm + by + 1k,

i)

x P (75 {\/58’2((11) —ci—b; € [rki, I’(kZ + 1))} ‘ \/§B’2(am) — Cm — by, = rkm) (bam(

(168)
Using the independence of B} and Bj, and noting ¢;((x — y)/v2)d:((z + 3)/V2) = ¢(x)d:(y),
m—1
A=¢a,(cm) > P ( () Eix ka> Gay, (b + ki) (169)
kezm i=1
where
Ei}k = {\/58&((14) — ¢ +b; > —rk:} n {\/EBIQ(CLZ) —c;i—b; € [I’k, I’(k‘ + 1))}
and
Gr,, = {V2B (am) — cm + bm = ki } N {V2BY(am) — ¢ — by = rkm }.
For each ¢, E; i, k € Z, are mutually disjoint events. Thus, taking the sums over kq,--- , ky,—1,
m—1
A=¢q,(cm) D P ( N E ka> Py, (b + k), E; =] Einx (170)
km €Z i=1 kez

Lemma, [5.2] below implies that

= BB g, (BB )

Setting B; = (B} — B})/v/2 and By = (B} + B})/+/2, which are two independent Brownian motions, and
noting the fact that dist,.({z — y},,{0},) = dist,.({z},, {y}+), the above equation becomes

A= ¢am (Cm)

m—1
X Z P < ﬂ {Ba(a;) — dist,({By(ai)}r, {bi}r) = ¢} | Bo(am) = m, Bi(am) = bm + rkm> ba,, (b + k).
km €Z =1

(171)
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Now, note that for a Brownian motion B(t),

Pz +rn) _ ¢¢(z+rn)

P(BO) =+ (B(1), = ) = =2 T = S (72)

where ¢§’)({x}r) is defined in (14). Thus,

A= ¢, (cm)P ( ﬁ {Ba(a;) — dist,({Bi(ai)}r, {bi}r) > ci} | Ba(am) = cm, {Bi(am)}r = {bm}r) ¢§r)({bnl}r)~
- (173)

This completes the proof of Proposition (b). O

Lemma 5.2. Recall that {x}, denotes the equivalence class of the real number x in the quotient space
I, = R/rZ. Recall the distance dist,({x}r, {y}r) = mingez |z — y — rk| between equivalence classes is defined
mn . For every two real-valued random variables X and Y,

fj (X =V > —rk, X+Y €[rk,r(k+ 1))} = {X > dist,({Y},, {0},)} . (174)

k=—o0

Proof. Since both sides of the equation are unchanged if we replace Y with Y + r, we may assume,
without loss of generality, that —r/2 <Y < r/2. Under this assumption, dist,({Y '}, {0},) = |Y|.

Suppose that there exists a k € Z such that X —Y > —rk and X +Y € [rk,r(k+1)). If £ = 0, then
X >Y and X > -Y. Thus X > |Y| = dist,({Y},, {0};). If [k| > 1, we have X > max{—rk+Y,rk—-Y} >
r/2 > Y| = dist,({Y},{0};). Therefore, we find that the left hand side of is a sub-event of the right
hand side.

Now we suppose that X > dist,({Y '}, {0};) = |Y|. There is an integer k such that X +Y € [rk,r(k+1)).
Note that k£ > 0 since X +Y > 0. Therefore X —Y > 0 > —rk. This implies the right hand side of is
a sub-event of the left hand side. Hence, the proof is complete. O

A Extension and continuity of the distribution functions F,,

The limit result was proved in [2] for most but not all parameters. In this section, we first show that the

convergence holds for all parameters. We then show that the limit functions are a consistent collection of

multivariate cumulative distribution functions. We further show that they are continuous in all variables.
Let h(n,t) be the height function for the TASEP on the discrete ring of size 2a as in Section For

T >0, let

h(yT?/3,27T) — T

hp(y,7) = Ve , (7,7) ERx Ry
where the ring size is set as (2a)%/2 = T[] Let
RT’S :{T: (7—1’... 77—m) c (0,00)mZO<T1 S S’rm}

For 7 € R} _, define

Q1) ={B=(Br, -, Bm) ER™: i < Biy1 if 7y = 11 }.

It was shown in [2] that for every v € R™ and 7 € R _, the limit

i () (s, 7) < 55} ) = P (357 7) comverges if € 97(7), (175)

T—o0 !
i=1

"To be precise, we set a = [T'2/3]/2 since a is a half-integer.
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as mentioned in .

When m = 1, it was already shown in [I] that the one-point distribution F; is a distribution function
and is continuous. We do not need the explicit form of F,, for the first two results below.

We first show that the limit ( convergences for every 3 € R™. For 7 € R _, define the set
Q"(r) = Q1) ={B= (B, -+, Bm) €ER™: ;i < Piy1 if 7, = Tip1 )
Lemma A.1. Lety € R™ and 7 € R} . For every Be Q™(7), the limit

lim  Fo(8;7,7) (176)
Qm(r)38—

exists. Furthermore, if we denote the limit as Fm(ﬁ;'y, T), then

i #( () e < i}) = Pl ()
Proof. For € > 0, let
Bl =P —(2— Je and B =B+ (1+ )€

m—+1 m+1
for i =1,---,m. Then, g, 3" € Q7 (7). Furthermore, (81, - ,ﬂk,ﬂkH, o Pm) € QP (7) for every k.
Let 8 € Q7(7) be an arbitrary number satisfying > | |3 — ;| < e. Note that 8, < 8; < . Thus,
Fon(B579,7) SFu(B;7,7) < Fu(B757,7)

where we used the fact that being a limit of a distribution function, F,,(8;v,7) is a weakly increasing
function of 8 € QF'(7). From the monotonicity property again, as € | 0, Fp,(8';,7) increases weakly and
F,.(8";~,7) decreases weakly. Therefore, the limit (176) converges if we show that

1i%1 Fo.(8";7,7) = Fn(B;57v,7) =0. (178)

For every j, from (175)),
Fm(ﬁi7 j 175 7/834»1,""6177,77’ ) m(61a7 j— 17ﬁjaﬁj+17"'761/q{7,;’777-)
= i (1 < Brtop,m) < ) el <8) () (et < o}
i=1 i=j+1

< lim P(B) < hT(%,Tg) < BY) =F1(B7;75,75) — F1(B5; 75, 75)-

T—o0

Summing over j, we obtain
F ( y T ;Bmv’% ) m(ﬁiv 7ﬂ;n;’77 Z Fl ﬂ]?’YJaTj) Fl(ﬁ;”ij,rj))'
j=1

Since the one-point distribution F; is continuous (see [I]), the right side converges to zero as e — 0. The
left-hand side is also nonnegative due to the monotonicity property of F,,. Thus we obtain , which
implies the convergence of .

With the same notations as above, from the monotonicity of probabilities which holds for the parameters
without any restrictions,

P(ﬁ {hr(y,7) < 52}) < P(é {hr(vi,7) < @}) =< P(ﬁ {hr(yi,m) < *Bz{l}>

As T — oo, the lower bound tends to Fm(ﬁ’;’y,T) and the upper bound tends to F,,(8";v,7). If we let
€ | 0, then both of them converge to F,,,(5;v, 7). This shows (L77]). O
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Corollary A.2. For every v € R™, 7 € R, and § € R™, the limit

(377 = Jim P( () fheom) <)) (179)
converges. The function ¥, (B;v,T) is invariant under the permutations of the triples (B, 7vi,7i), i =
1,

Proof. The probability P(ﬁﬁl{HT(%,n) < Bi}) is defined for every (v,7,8) € R™ x R x R™, and is
invariant under the permutations of the triples (8;,7;,7;). For a permutation o € S,,, let v7,77, 87 be
the parameters obtained from +, 7,8 applying the permutation o to the index. Let o be a permutation
so that 77 € RY _ and 87 € Q' (77). There is at least one such permutation. By the last lemma,
]P’(ﬂ?;l{flT(’yi,n) < Bi}) =P( ?il{flT(fyf,Tf) < B7}) converges. If there are more than one permutation
with the same property, then it is easy to check that they results in the same limit. The invariance under
permutations follow easily. O

m.

Therefore, the convergence holds for all parameters, and we use the same notation F,,(5;~,7) for
the limit. We now show that F,,(8;v,7) are a collection of consistent multivariate cumulative distribution
functions. For the restricted parameters, this fact was proved in [2| Section 7]. Here, we prove it for all
parameters.

Proposition A.3. (a) For every m and (v,7) € R™ xR, § — F,,,(B;7,7) is a multivariate cumulative
distribution function.

(b) Let (v,7,5) € R™ xR x R™. For each j =1,--- ,m, let @) 7)) BU) be the points in R™~ obtained
from ~y, 7,8 by removing vy;,T;, B, respectively. Then,

lim F,,(5;7,7) = mel(ﬂ(j);v(j)m(j)).
5j—)00

Proof. (a) The equation ((179)) implies the monotone non-decreasing property. It also implies that F,,,(5;v,7) <
Fi1(Bj;v,7;) and 1 —Fp, (857, 7) < Z;’;l(l —F1(Bj;7;,75)). We thus find the correct limit properties as (8
becomes small or large.

(b) From (179)) again,

0<Fpu1 (8999, 70) — Fpu(Bi9,7) = Tlgn;op({ﬁmj,m >8;} () {br(ym) < ﬂi})
1<i<m
i#j

< :FILH;OP(ET(WjaTj) > B) =1—=F1(Bj;75,75)-

The upper bound tends to 0 as 3; — +oo since F; is a distribution function [1]. O

The final result of this Section is the continuity of F.,(5;7,7). When 8 € Q7'(7), the limit F,(3;v, )
for (175) is given by the formula
ks dZi

Fon(8:7,7) = mliyn;f---yfazw(z)p

=1

(180)

2

where the integrand is same as that of the formula (with p = 1) but the radii of the contour circles
satisfy the reverse inequalities 0 < |z,| < - -+ < |z1] < 1. From the formula of C(z) and D(z) in Section
(with p = 1) and Lemma F,.(8;,7) is jointly continuous for v € R™, 7 € R} , and 8 € Q™ (7). Due
to the invariance under permutations of the triples of the parameters, it is continuous on the set

Ul =R™ xR xR™\ {(v,7,8) : i = B and 7; = 7; for some 1 < i < j < m}.

The next result shows that it is continuous in all of R™ x R x R™.
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Proposition A.4. The function Fy,(B;7,7) is jointly continuous in (v,7,3) € R™ x R x R™.
Proof. Let (v,7,8) be a point in R™ x R* x R™. For (v/,7/,") € R™ x R x R™ and 1 < j < 'm, let
PYE]):( 775’—1775‘37]’4—17"')7 T(/j):("'aTJ/‘—lale'aTj—O—la"')a BEJ):( ) ;'—176;'76j+17"')'

Fom (179)), for every j,

B (B 70y () = Fon (B -1)3 (-1 TG-1)]
< Th_{r;op(hT 5 7i) < Bjs hr(v;,75) > B;) + P(hr(v;, 7)) < B;, hT(’Yj, ) > )
= ’Thj}c{op(hT Y ,Tj/ < ﬂ ) +P(hT(’7j77_j) < Bj) - QIP(hT(’Y;vTJ/) < 5;7 hT(ijvTj) < BJ)

Thus,
|Fm(ﬂzj);’y£j)77—(/j)) - Fm(62j71)§'72j71)v7'(/j71))| = Fl(ﬂ;%’)’;ﬁ]{) +F1(B5375,75) — 2F2(ﬁ;‘a 5]';’7;'7’7;'»7']/'»7']')

< F1(B5575, 75) + F1(By3 74, 75) — 2F2(B5, B — €955 75> Tj» T)
for every € > 0. If (v}, 7}, 8}) is close enough to (v;, 7, B;), then (vi, v, 7}, 75,85, 8; —€) € U2. Thus, the

continuity of Fy on U7 implies that

lim sup |Fm(62j); ’YEj)a T(/j)) - Fm(ﬁzj—l); ’Yéj—1)a T(/j—l))|
(s, B) = (v,78)

< 2F1 (85575, 75) — 2F2(B5, 85 — €95, 75, 75) = 2F1(853 75, 75) — 2F1(85 — €95, 75)

where we used the fact that Fa(a, b;vy,~v,7,7) = F1(a;v, 7) if a < b, which follows from the definition of ((179)).
Since the inequality holds for every ¢ > 0 and the one-point distribution function F; is continuous, we find
that

limsup — [F0n (55705, 7)) = Frn(B5-1):7G-1) T5-)) = 0-
(7B orms)

Summing over j, we conclude that

lim sup |Fm (B9, 7") = Fn(B57,7)| =0,
y7",B8") = (v,7,8)

proving the desired continuity. O

B Formula of D,(z)

We state the formula of D(z) given in [2, Lemma 2.10] and show that it can be written as the form in
Subsection It is enough to check it when p = 1 since the general p case follows from the property @D
For complex vectors W = (w1, -+ ,wy,) and W/ = (w],-- ,w.,,), we denote

AW)= [ (wj—w) and AW;W)=]]]](w:-
i=1j=1

1<i<j<n
We also use the notation that for a function g of a single variable and a vector W = (wq, - -+ ,wy,),
n
g(W) =[] g(ws).
i=1
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For 0 < |z| < 1, the sets L, and R, are the discrete sets in the complex plane defined as
L,={w: e 2 = 4, Re(w) < 0} and R, ={w: e 2 = 4, Re(w) > 0}.

The series formula of D(z) given in [2, Lemma 2.10] is

D= 3 nl Da(2)

ne{0,1,--}m

where for n = (ny,++ ,ny) and 0 < |z1] < -+ < |zm| < 1,

put) = (1-22)" (1= 2" > [IACRAG A ho)

Zi Zi—
g i-1 ue L”l’L 1

V(l) Rnl
S (181)

AU; VAV @, g1y g=h(VO zim)=h(VETY 2)
x 1:[2 AU®; UGCAWV@; ViE=1D)) eh(UD zim)+h(UGD )

with
L1 ze(w Y )/2)d Re(w) <0
\/27? 1/2 7
hw, ) = % o
_E/ Liy jo(ze(™ 7¥)/%)dy, Re(w) > 0,
e_%(Ti_Ti—l)ws'f‘%('Y'i_’)’i—l)wz'f'(ﬁi_ﬁi—l)w Re(w) < 0
f/’(w) _ bl b)
) 6%(Ti*Tz‘f1)w3*%(’Yi*“rifl)w2*(ﬁi*ﬂi71)w, Re(w) >0,
and

fz(w) — éfi(w)th(w,zi).

Note that w € R, if and only if —w € L,. Thus, setting U@ = -V the sum in (181)) can be written
as

T AU —OENA (=T D; D) o0 2i0) —h(=017 2)
% H AU UGA(=U®; =1 ehUDzi)+h(UED,2)

1=2

Since h(—w,z) = h(w, z), after inserting the formula f;(w) = L fi(w)e? =) and using the notation E**
of instead of f;, we can express the above sum as

m e2h(T D zi)+2h(UD ;) mon; 0 0
Z H eh(UG=D) 2+ h(UCHD 2)+h (TG 2;)+h (T 6D, 2;) H HE (uj )E (Uj )
U(l) U(l)eL"z i=1 i=1j5=1
i=1,-
y ﬁ 1”_[ H U(z 2A U®)2 ﬁ N(RE _(j(i—l))A(_U(i); Ui-1)
1o u l) (1) U(z)) g A(U(i);U(ifl))A(fﬁ(i); 70(1-,1))
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where we set U©) = U0 = U(m‘H) = U+ = ) g0 that @) = 1, and so on. The product involving
the function h is Hy (U, U of { and the next product involving E* is E,(U, U ) of . Finally, again

with the convention U = {7 (© U(m+1 Uim+1) — 0, we have
H AUY ))QA )? ﬁ (U®D; —gE-A(=U®; yli-1)
i AU s AUC ) L UG-D)A(=U@); —U D)

Tﬁl =D)A ( UG=NAUD; —TED)A(=TD; U A(UD)A(=T D)
- UG=1); —JG=10)AUG; UG-=D)A(=U@); U E=D)A(UG); U @)

m+1
= (=1)mttnm H K(U —Uu®,pt-n _U(i))

in terms of the Cauchy determinant (30). This is a factor of Ry (U, U) of (31), and we thus find that Dy (z)
is equal to the form in Subsection
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