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Abstract

The periodic KPZ fixed point is the conjectural universal limit of the KPZ universality class models

on a ring when both the period and time critically tend to infinity. For the case of the periodic narrow

wedge initial condition, we consider the conditional distribution when the periodic KPZ fixed point is

unusually large at a particular position and time. We prove a conditional limit theorem up to the “pinch-

up” time. When the period is large enough, the result is the same as that for the KPZ fixed point on the

line obtained by Liu and Wang in 2022. We identify the regimes in which the result changes and find

probabilistic descriptions of the limits.

1 Introduction and main results

The KPZ fixed point is a universal two-dimensional random field [17] to which the height functions of many

random growth models on the line are expected to converge in the large-time limit. Among various properties

found for the KPZ fixed point (see, for example, [7, 11, 6, 14, 15, 19, 5] and references therein) is the recent

study on conditional distributions when the field is uncharacteristically large at a specific position and time

[16]. This paper aims to study similar conditional distributions for the periodic KPZ fixed point, which

arises as the universal limit for random growth models on a ring. The size of the ring affects the field, and

the interest is to determine the effect of domain size on the conditional distribution. We first review a result

for the “pinched-up” KPZ fixed point and then introduce the periodic KPZ fixed point.

1.1 KPZ fixed point when it is pinched-up

Let H(x, t) denote the KPZ fixed point with the narrow wedge initial condition. Consider the situation when

H(0, 1) = L is large. It was shown in [18] that conditional on H(0, 1) = L, the one point distribution of

H(x, t) − L converges to a properly scaled Tracy-Widom distribution for every fixed (x, t) ∈ R × (1,∞) as

L → ∞. This is consistent with the intuition that the conditioning makes the shifted height H(x, 1) − L

close to the narrow wedge, and thus, from the Markovian property, the pinched-up process after time t = 1

should look again like the KPZ fixed point with the narrow wedge initial condition, starting at t = 1. On

the other hand, for t ∈ (0, 1), the following result was proven.

Theorem 1.1 ([16]). Let H(x, t) be the KPZ fixed point with the narrow wedge initial condition. Let B1 and

B2 be independent Brownian bridges. Then

Law

({
H( x

2L1/4 , t)− tL

L1/4

}
(x,t)∈R×(0,1)

∣∣∣H(0, 1) = L

)
f.d.d.−−−→ Law

({
Bbr
2 (t)−

∣∣Bbr
1 (t)− x

∣∣}
(x,t)∈R×(0,1)

)
(1)

as L → ∞, where
f.d.d.−−−→ denotes the convergence of finite dimensional distributions, and the conditional law

should be understood as P(· | H(0, 1) = L) = limϵ→0 P(· | H(0, 1) ∈ (L− ϵ, L+ ϵ)).
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Here, the term “Brownian bridges” means standard Brownian bridges, that is, the duration of time is

1, and they return to 0 at time 1. We use the same convention throughout this paper. We also use the

term “Brownian motion” to refer to a standard Brownian motion which starts at 0. We emphasize that our

Brownian motions and Brownian bridges could be defined on two different metric spaces in this paper, the

real line R or the quotient space Ir = R/rZ, where r is a positive number. We will use B, Bbr to denote the

Brownian motions and Brownian bridges on the real line, and BIr , Bbr;Ir the Brownian motions and Brownian

bridges on Ir respectively.

The original formula in [16] was given in terms of (Bbr
1 (t)− x) ∧ (Bbr

2 (t) + x). Here we used the identity

a ∧ b = 1
2 (a + b) − 1

2 |a − b|, and the invariance of the law of two independent Brownian bridges under

orthonormal transformations to rewrite it as the form in (1).

The KPZ fixed point with the narrow wedge initial condition satisfies the invariance properties

αH(α−2x, α−3t)
d
= H(x, t) and H(x, t)

d
= H(x+ βt, t) +

1

t

(
(x+ βt)2 − x2

)
(2)

for every α > 0 and β ∈ R. Thus, (1) also implies a result when the conditioning is given at a general point

(X,T ) instead of (0, 1) (see [16, Remark 1.5]):

Law

{H(tX + xT 3/4

2L1/4 , tT )− tL

T 1/4L1/4

}
(x,t)∈R×(0,1)

∣∣∣H(X,T ) = L

 f.d.d.−−−→ Law
({

Bbr
2 (t)−

∣∣Bbr
1 (t)− x

∣∣}
(x,t)∈R×(0,1)

)
(3)

as L → ∞.

The papers [8, Theorem 1.9] and [10] also considered conditional limit theorems and obtained the first-

order term and concentration results. The result (1) has an implication on the geodesics in the directed

landscape as well. Based on the above result, the authors of [16] conjectured that conditional on H(0, 1) = L

goes to infinity, the geodesic converges to the Brownian bridge. This conjecture was recently proved by [9]

using geometric and probabilistic methods. These results show that the geodesic between (0, 0) to (0, 1)

typically stays within the distance of order L−1/4 from the straight line.

1.2 Periodic KPZ fixed point

Let h(n, t) be the height function of the totally asymmetric simple exclusion process (TASEP) on the discrete

ring of size 2a. We identify the ring as the set {−a + 1, · · · , a} and extend the TASEP periodically on the

integers Z by setting h(n± 2a, t) = h(n, t). We may call the extended TASEP a periodic TASEP of period

2a. Suppose that initially, h(n, 0) = |n| for −a + 1 ≤ n ≤ a and is extended periodically. This initial

condition is called the periodic step initial condition.

An interesting large time limit arises when the period 2a is proportional to t2/3, which is called a

relaxation time scale. In this limit, the ring size affects the fluctuations of the height function nontrivially.

It was shown1 in [2] that for every positive integer m, for every m distinct points (γi, τi) ∈ R×R+ and every

m real numbers βi, i = 1, · · · ,m,

lim
T=(2a)3/2→∞

P

(
m⋂
i=1

{
h(γiT

2/3, 2τiT )− τiT

−T 1/3
≤ βi

})
= Fm(β; γ, τ) (4)

converges, where β = (β1, · · · , βm), τ = (τ1, · · · , τm), and γ = (γ1, · · · , γm). The function Fm(β; γ, τ) is

periodic with the shift γi 7→ γi + 1 for any i, and can be extended continuously for (γ, τ, β) ∈ Rm × Rm
+ ×

Rm. The functions Fm, m = 1, 2, · · · , form a consistent collection of multivariate cumulative distribution

functions. See Section 2.2 and Appendix A for the formula and properties of these functions.

1In [2], the case when γi ̸= γi′ , τi = τi′ and βi = βi′ for some i ̸= i′ was not analyzed. See Appendix A how we can obtain
the result in this case.
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Let H(per)(γ, τ), (γ, τ) ∈ R×R+, be a process whose law is defined by the collection Fm. It satisfies the

spatial periodicity

H(per)(γ + 1, τ) = H(per)(γ, τ).

Since we will only discuss finite-dimensional properties in this paper, we will simply call it the periodic

KPZ fixed point with the periodic narrow wedge initial condition. The limit (4) was also proved for the

discrete-time TASEP [13] and the PushASEP [12] on a ring. The distribution functions Fm are expected

to be the universal limits for the multi-time, multi-position distributions of the KPZ universality class in

the periodic domain at the relaxation time scale. The convergence (4) was also extended to other initial

conditions satisfying some technical assumptions [3]. Since we will only consider the periodic narrow wedge

initial condition case in this paper and leave other initial conditions for future consideration, we will simply

call H(per)(γ, τ) the periodic KPZ fixed point without mentioning the initial condition.

Unlike the KPZ fixed point, the periodic KPZ fixed point does not satisfy the invariance properties (2).

Instead, it was conjectured in [2] that

ϵ−1/3H(per)(2ϵ2/3γ, ϵτ) → H(γ, τ) as ϵ → 0 (5)

and √
2

π1/4T 1/2

(
H(per)(γ, τT ) + τT

)
→ B(τ) as T → ∞ (6)

where B is a Brownian motion. The limit in (6) does not depend on γ. The one-point distribution case of

(5) with γ = 0 was verified in [4, Theorem 1.6] and the one-point distribution case of (6) was proved in [4,

Theorem 1.5].

The process H(per) has period 1. It is illuminating to consider the general periods. For p > 0, let

Hp(γ, τ) := p1/2H(per)(p−1γ, p−3/2τ). (7)

Then, it satisfies

Hp(γ + p, τ) = Hp(γ, τ) (8)

We call it the p-periodic KPZ fixed point (with the periodic narrow wedge initial condition). The processes

with different parameters are related by the formula

p−1/2Hp(pγ, p
3/2τ)

d
= H1(γ, τ) (9)

for all p > 0. The conjectures (5) and (6) are translated to the conjecture on the large period limit

Hp(2γ, τ) → H(γ, τ) as p → ∞ (10)

and the conjecture on the small period limit

√
2p1/4

π1/4

(
Hp(γ, τ) + p−1τ

)
→ B(τ) as p → 0, (11)

both in the sense of convergence in finite-dimensional distributions.

1.3 Results

The goal of this paper is to study the periodic KPZ fixed point when Hp(0, 1) = ℓ is unusually large. We

obtain the following results up to the “pinch-up” time. We allow the period p vary while ℓ → ∞. There are

three theorems depending on the value pℓ1/4. The critical case is when pℓ1/4 = O(1). We call the other two

cases p ≫ O(ℓ−1/4) and p ≪ O(ℓ−1/4) the case of large period and the case of small period, respectively.
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Theorem 1.2 (Large period case). We have

Law

({Hp(
x

ℓ1/4
, t)− tℓ

ℓ1/4

}
(x,t)∈R×(0,1)

∣∣∣Hp(0, 1) = ℓ

)
f.d.d.−−−→ Law

({
Bbr
2 (t)−

∣∣Bbr
1 (t)− x

∣∣}
(x,t)∈R×(0,1)

)
as ℓ → ∞ if 2

ℓ−1/4 ≪ p and log p ≪ ℓ3/2,

where Bbr
1 and Bbr

2 are independent Brownian bridges.

In order to introduce the limit theorem in the critical period case, we need to define a Brownian bridge

on a periodic domain. For r > 0, let Ir = R/rZ be the quotient space of R by rZ. We denote by {x}r the
equivalence class of x ∈ R. Naturally, it satisfies the periodicity {x}r = {x+ r}r. The distance of two points

{x}r and {y}r of Ir is defined as

distr({x}r, {y}r) = min
k∈Z

|x− y + kr|. (12)

A Brownian motion BIr(t) on Ir can be defined from a Brownian motion B(t) on R by the formula

BIr(t) = {B(t)}r. (13)

It is straightforward to see that BIr(t) is a Markov process with the transition density

lim
ϵ→0

ϵ−1P
(
distr

(
BIr(t)− {x}r

)
≤ ϵ | BIr(s) = {y}r

)
= ϕ

(r)
t−s({x− y}r)

for all {x}r, {y}r ∈ Ir and ordered times s < t, where the function ϕ(r) is defined by

ϕ
(r)
t ({x}r) =

∑
k∈Z

ϕt(x+ kr), for {x}r ∈ Ir, (14)

and ϕt(x) :=
1√
2πt

e−
x2

2t is the density function of the centered Gaussian distribution with variance t > 0.

A Brownian bridge Bbr;Ir(t) on Ir is a Brownian motion on Ir conditional on Bbr;Ir(1) = {0}r. Its finite-

dimensional distributions are given by

P

(
m⋂
i=1

{
Bbr;Ir(ti) ∈ Ai

})
= P

(
m⋂
i=1

{
BIr(ti) ∈ Ai

} ∣∣∣BIr(1) = {0}r

)

for any m ≥ 1, where t1, · · · , tm are m distinct times on (0, 1), and A1, · · · , Am are m open sets in Ir.

Theorem 1.3 (Critical period case). For r > 0, we have

Law

({Hp(
x

ℓ1/4
, t)− tℓ

ℓ1/4

}
(x,t)∈R×(0,1)

∣∣∣Hp(0, 1) = ℓ

)
f.d.d.−−−→ Law

({
Bbr
2 (t)− distr

(
Bbr;Ir
1 (t), {x}r

)}
(x,t)∈R×(0,1)

)
as ℓ → ∞ if

p = rℓ−1/4,

where Bbr;Ir
1 (t) is a Brownian bridge on Ir and Bbr

2 (t) is a Brownian bridge on R which is independent of

Bbr;Ir
1 (t).

2The notations mean that pℓ1/4 → ∞ and log p/ℓ3/2 → 0 as ℓ → ∞.
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Theorem 1.4 (Small period case). We have

Law

({Hp(
x

ℓ1/4
, t)− tℓ

ℓ1/4

}
(x,t)∈R×(0,1)

∣∣∣Hp(0, 1) = ℓ

)
f.d.d.−−−→ Law

({
Bbr(t)

}
(x,t)∈R×(0,1)

)
as ℓ → ∞ if

ℓ−1 log ℓ ≪ p ≪ ℓ−1/4,

where B is a Brownian bridge.

We have several remarks.

• Let H̃p(x, t) :=
Hp(

x

ℓ1/4
,t)−tℓ

ℓ1/4
. The above results should be understood as, for every positive integer m

and real numbers h1, · · · , hm−1, the limit

lim
ℓ→∞

P
(
H̃p(x1, t1) ≥ h1, · · · , H̃p(xm−1, tm−1) ≥ hm−1

∣∣∣∣Hp(0, 1) = ℓ

)
(15)

exists in each case and is given by the corresponding joint probabilities of the limiting fields in the

theorems. The conditional probability in (15) should be understood as

lim
ϵ→0

P
(
H̃p(x1, t1) ≥ h1, · · · , H̃p(xm−1, tm−1) ≥ hm−1,Hp(0, 1) ∈ (ℓ− ϵ, ℓ+ ϵ)

)
P(Hp(0, 1) ∈ (ℓ− ϵ, ℓ+ ϵ))

.

• In all three cases, the position and the height are scaled the same way as in the KPZ fixed point case

(1), except for multiplicative 2 in the spatial variable (see (10)). The factor 2 is due to the fact that

the periodic KPZ fixed point uses a different convention for the spatial variable compared to the KPZ

fixed point. Similar discrepancy also appears in the equation (10).

• Consider the limiting field of Theorem 1.3. Note that

lim
r→∞

distr ({x}r, {y}r) = |x− y|, lim
r→0

distr ({x}r, {y}r) = 0 for x, y ∈ R. (16)

Also note that a Brownian bridge on Ir becomes a Brownian bridge on R as r → ∞ and tends to 0 as

r → 0. Thus, the limiting field in the critical period case interpolates the limiting fields in the other

two cases.

• For fixed t, the limiting field of Theorems 1.2 has maximum value Bbr
2 (t) obtained at x = Bbr

1 (t).

Similarly, for fixed t, the limiting field of Theorems 1.3 has maximum value Bbr
2 (t) obtained at x =

Bbr;Ir
1 (t). On the other hand, the limiting field of Theorem 1.4 does not depend on x.

• As mentioned at the end of Section 1.1, conditional on H(0, 1) = ℓ, the geodesic from (0, 0) to (0, 1) in

the directed landscape stays within a distance of order ℓ−1/4 from a straight line as ℓ → ∞. Since Hp

has the period p, it is natural to conjecture that limit theorems for the periodic KPZ fixed point take

different forms depending on p ≫ ℓ−1/4 or p ≪ ℓ−1/4. The results above show that the critical regime

is indeed when p is same order as ℓ−1/4.

• In Theorem 1.2, p is allowed to tend to zero, stay O(1), or tend to infinity as long as it satisfies

p ≫ ℓ−1/4 and log p ≪ ℓ3/2. In this case, the limit is exactly same that of the KPZ fixed point (1)

as the KPZ fixed point (except for the factor 2 in the spatial scale). The condition log p ≪ ℓ3/2 is a

technical one. We expect that Theorem 1.2 holds true as long as p ≫ ℓ−1/4, but it is not clear how to

remove this condition from our proof.
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• In Theorems 1.3 and 1.4, the period p necessarily tends to zero. Theorem 1.3 corresponds to the case

when the period and the geodesic interact non-trivially. The condition p ≫ ℓ−1 log ℓ in theorem 1.4 is

also a technical one, which may be weakened, but we do not expect that it can be completely removed.

• From the scaling property (9), the theorems imply similar results when we condition at time τ instead

of time 1: conditional on that Hp(0, τ) = ℓ,

Hp(
xτ3/4

ℓ1/4
, tτ)− tℓ

τ1/4ℓ1/4

converges to the limit from one of the above three theorems as ℓ → ∞.

• For the case when p = O(1) or p → ∞ in Theorem 1.2, it is also interesting to consider the analogous

result conditional on Hp(x, 1) = ℓ. We expect a result similar to (3). However, unlike the KPZ fixed

point situation, the periodic KPZ fixed point does not satisfy the invariance properties (2), and the

result does not directly follow from Theorem 1.2. This situation will be studied in a separate paper.

1.4 Asymptotics of the one-point density in the right tail regime

The analysis of the paper also yields the following asymptotics.

Theorem 1.5. Let

fp(β; γ, τ) =
d

dβ
P (Hp(γ, τ) ≤ β) (17)

be the one-point density function of the periodic KPZ fixed point. Then, as ℓ → ∞,

fp(ℓ; 0, 1) =



1

8πℓ
e−

4
3 ℓ

3/2

(1 + o(1)) if ℓ−1/4 ≪ p and log p ≪ ℓ3/2,

c(r)

8πℓ
e−

4
3 ℓ

3/2

(1 + o(1)) if p = rℓ−1/4,

1

4
√
2πℓ5/4p

e−
4
3 ℓ

3/2

(1 + o(1)) if ℓ−1 log ℓ ≪ p ≪ ℓ−1/4,

(18)

where

c(r) =
∑
k∈Z

e−
1
2 r

2k2

=

√
2π

r

∑
k∈Z

e−
2π2

r2
k2

. (19)

Thus, if ℓ−1/4 ≪ p and log p ≪ ℓ3/2, the asymptotic matches the right tail behavior of the density

function of the GUE Tracy-Widom distribution. For the KPZ fixed point on the line, which is the p = ∞ case

of the periodic KPZ fixed point, the one-point distribution is given by the GUE Tracy-Widom distribution.

Hence, we expect that the asympotics does not depend on p as long as p ≫ ℓ−1/4.

The right tail when p = 1 was previously obtained for the one-point distribution function. The result [4,

Theorem 1.7] shows that3

P (H1(0, 1) > ℓ) =
1

16πℓ3/2
e−

4
3 ℓ

3/2

(1 +O(ℓ−3/2)) as ℓ → ∞.

The above theorem when p = 1 is consistent with the formal derivative of this result.

3Asymptotic result was also obtained for P (H1(γ, τ) > ℓ) for all γ, τ .
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1.5 Structure of the paper

The proofs of Theorems 1.2–1.4 are based on an analysis of an explicit formula of the multi-time, multi-

position distributions of the periodic KPZ fixed point obtained in [2]. The method is similar to that of [16]

for the KPZ fixed point, but since the formulas for the periodic KPZ fixed point are more complicated, the

analysis is more involved. The other difficulty is to find probabilistic descriptions of the limits of the formulas,

especially for Theorem 1.3, which we first obtain in terms of complicated contour integrals. We guess the

probabilistic interpretations of the formulas and check that they are correct by direct computations.

The explicit formula of the multi-time, multi-position distributions of the periodic KPZ fixed point

involves an integral of a Fredholm determinant. In Section 2, we introduce this formula and show that upon

the conditioning, the integral of some terms of the series expansion of the Fredholm determinant vanishes. We

then state four propositions, Propositions 2.8–2.11, and prove Theorems 1.2–1.4 assuming these propositions.

We also prove Theorem 1.5 in this section. Section 3 is a preparatory section where we consider a function

appearing in the distribution formula to compute its limit and obtain several bounds. Section 4 is the main

analytic part of the paper. We perform asymptotic analysis and prove Proposition 2.8–2.10. Proposition

2.11, is proved in Section 5. There are two sections in the Appendix. In Appendix A, we prove (4) for the

exceptional values of parameters that were not treated in [2] and also prove the continuity and consistency

of the distribution functions Fm. Finally, we show in Section B that the series formula of the Fredholm

determinant in Section 2 is the same as that of [2].
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2 Proof of theorems

2.1 Set-up

The conditions on p and ℓ in Theorem 1.2–1.4 are

• (Case 1) p ≫ ℓ−1/4, log p ≪ ℓ3/2, and ℓ → ∞,

• (Case 2) p = rℓ−1/4 and ℓ → ∞,

• (Case 3) ℓ−1 log ℓ ≪ p ≪ ℓ−1/4 and ℓ → ∞,

respectively. In the rest of the paper, we will refer these limits as “for Case 1”, and so on. In each case, we

evaluate the limit of

P

(
m−1⋂
i=1

{
H̃p(xi, ti) ≥ hi

} ∣∣∣∣Hp(0, 1) = ℓ

)
. (20)

in (15). We will also often state that a result holds “eventually” to mean that it holds when the appropriate

parameters are large enough. For example, for Case 3, it means that there are positive constants c1, c2, c3 > 0

such that the result holds for all ℓ and p satisfying ℓ ≥ c1, p
−1ℓ−1/4 ≥ c2, and

pℓ
log ℓ ≥ c3.

The following result from [16] shows that when we consider the limit of (20) it is enough to consider the

case when t1, · · · , tm−1 are all distinct.
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Lemma 2.1. [16, Lemma 3.6] Let Y be a random field on R×(0, T ) with the property that for every positive

integer d and x1, · · · , xd ∈ R, the cumulative distribution function P
(
∩d
i=1{Y (xi, ti) ≤ βi}

)
is continuous

in the variables βi and ti for every 1 ≤ i ≤ d. If a sequence of random fields Yn on R × (0, T ) satisfies

(Yn(xi, ti))i=1,··· ,d → (Y (xi, ti))i=1,··· ,d in distribution as n → ∞ for every d and for every (xi, ti) ∈ R ×
(0, T ), i = 1, · · · , d, where t1, · · · , td are distinct numbers, then Yn(x, t) → Y (x, t) in the sense of convergence

of finite-dimensional distributions as n → ∞.

Thus, the convergence for distinct times imply the convergence for arbitrary times if the limit distributions

satisfy a continuity property. The limit fields in Theorems 1.2-1.3 clearly satisfy the continuity properties,

and thus, it is enough to prove the convergence in distribution for distinct times only.

2.2 Formula of the distribution functions

Recall the relation (7) between Hp and H(per). When the times are distinct,4 there is an exact formula for

the multi-point distributions of H(per). We state the formula here. We analyze this formula to prove the

theorems.

Let β1, · · · , βm be real numbers. Set I+i = [βi,∞) and I−i = (−∞, βi]. Consider m points (γ1, τ1),

· · · , (γm, τm) ∈ R × (0,∞) satisfying 0 < τ1 < · · · < τm. The paper [2] obtained formulas for the joint

probabilities

P
(
H(per)(γ1, τ1) ∈ I±1 , · · · ,H(per)(γm−1, τm−1) ∈ I±m−1,H(per)(γm, τm) ∈ I−m

)
(21)

for arbitrary choices of + and − in each place. When all but the last signs are positive, we have (see [2, eq.

(7.17)] and note the relation (7) between H(per) and Hp)

P

(
m−1⋂
i=1

{Hp(γi, τi) ≥ βi} ∩ {Hp(γm, τm) ≤ βm}

)
=

(−1)m−1

(2πi)m

∮
· · ·
∮

C(z)D(z)

m∏
i=1

dzi
zi

(22)

where the contours are circles centered at the origin with the radii satisfying 0 < |z1| < · · · < |zm| < 1. With

z = (z1, · · · , zm), the functions C(z) and D(z) are defined in (23) and (25) below. In Appendix A, we will

use the case when all signs are negative.

To introduce the function C(z), let Lis(z) denote the polylogarithm function of order s. Then,

C(z) =

m−1∏
i=1

zi
zi − zi+1

m∏
i=1

e
βi

p1/2
A1(zi)+

τi

p3/2
A2(zi)

e
βi

p1/2
A1(zi+1)+

τi

p3/2
A2(zi+1)

e2B(zi,zi)−2B(zi+1,zi) (23)

where

A1(z) = − 1√
2π

Li3/2(z), A2(z) = − 1√
2π

Li5/2(z), B(z, z′) =
1

4π

∞∑
k,k′=1

zk(z′)k
′

(k + k′)
√
kk′

. (24)

Here, we set zm+1 = 0 in the expressions.

The function D(z) is a Fredholm determinant. The series formula of it is

D(z) =
∑

n∈{0,1,··· }m

1

(n!)2
Dn(z) (25)

where n! = n1!n2! · · ·nm! for n = (n1, · · · , nm) and Dn(z) is given below. The formula of Dn(z) below is

slightly different from that of [2, Lemma 2.10] and we explain in Appendix B how to obtain the formula.5

4The result is also obtained for equal-time case when τi = τi+1 for some i as long as βi < βi+1.
5The paper [5] also discusses another Fredholm determinant formula.
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For |z| < 1, define the discrete set

Lz = {w : e−w2/2 = z, Re(w) < 0}. (26)

For n = (n1, · · · , nm) and distinct complex numbers z1, · · · , zm in the punctured unit disk, let

Dn(z) =

m∏
i=2

(
1− zi−1

zi

)ni
(
1− zi

zi−1

)ni−1 ∑
U, Û∈L

n1
z1

×···×Lnm
zm

Hn(U, Û)Rn(U, Û)En(U, Û) (27)

with the functions defined as follows. Let

h(w, z) = − 1√
2π

∫ w

−∞
Li1/2(ze

(w2−y2)/2)dy for Re(w) < 0. (28)

For U = (U (1), · · · , U (m)) and Û = (Û (1), · · · , Û (m)) with U (i), Û (i) ∈ Lni
zi , we write the components U (i) =

(u
(i)
i , · · · , u(i)

ni ) and Û (i) = (û
(i)
i , · · · , û(i)

ni ). Then,

Hn(U, Û) =

m∏
i=1

ni∏
j=1

e2hi(u
(i)
j )−hi+1(u

(i)
j )−hi−1(u

(i)
j )+2hi(û

(i)
j )−hi+1(û

(i)
j )−hi−1(û

(i)
j ) (29)

where hi(w) := h(w; zi) and h0(w) = hm+1(w) = 0. Next, for X = (x1, · · · , xa) and Y = (y1, · · · , ya), let

K(X;Y ) = det

(
1

xi + yj

)a

i,j=1

=

∏
1≤i<j≤a(xj − xi)(yj − yi)∏a

i,j=1(xi + yj)
(30)

denote the Cauchy determinant. We have

Rn(U, Û) =

 m∏
i=1

ni∏
ji=1

1

u
(i)
ji
û
(i)
ji

 m∏
i=0

K(U (i),−Û (i+1); Û (i),−U (i+1)) (31)

with the convention that U (0) = Û (0) = U (m+1) = Û (m+1) = ∅. Finally,

En(U, Û) =

m∏
i=1

ni∏
ji=1

Ei,+(u
(i)
ji
)Ei,−(û

(i)
ji
), Ei,±(s) := e

− τi−τi−1

3p3/2
s3± γi−γi−1

2p s2+
βi−βi−1

p1/2
s
. (32)

2.3 Derivative of the distribution function

The conditional probability is interpreted as (see (20))

P
(m−1⋂

k=1

{
Hp(γk, τk) ≥ βk

} ∣∣∣∣Hp(γm, τm) = βm

)

= lim
ϵ→0

P
(
∩m−1
k=1 {Hp(γk, τk) ≥ βk} ∩ {Hp(γm, τm) ∈ (βm − ϵ, βm + ϵ)}

)
P (Hp(γm, τm) ∈ (βm − ϵ, βm + ϵ))

=

∂
∂βm

P
(
∩m−1
k=1 {Hp(γk, τk) ≥ βk} ∩ {Hp(γm, τm) ≤ βm}

)
∂

∂βm
P (Hp(γm, τm) ≤ βm)

.

(33)

We now take a derivative of (22) to find a formula for (33). We have the following result for the numerator.

The denominator is given by the same formula with m = 1. In the result below, compared with (25), the

sums are only over n ∈ {1, 2, · · · }m, instead of being over n ∈ {0, 1, 2, · · · }m. Also, D̂n(z) is the same

as Dn(z), except for the extra factor
∑nm

j=1(u
(m)
j + û

(m)
j ) in the summand. This proof is modeled on a

computation from [16].
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Proposition 2.2. Let N = {1, 2, · · · }, the set of positive integers. Then,

∂

∂βm
P
(
∩m−1
k=1

{
Hp(γk, τk) ≥ βk

}
∩
{
Hp(γm, τm) ≤ βm

})
=

(−1)m−1

(2πi)mp1/2

∮
· · ·
∮ (

A1(zm)C(z)
∑

n∈Nm

Dn(z)

(n!)2
+ C(z)

∑
n∈Nm

D̂n(z)

(n!)2

)
m∏
i=1

dzi
zi

(34)

where the contours are the circles centered at the origin with radii satisfying 0 < |z1| < · · · < |zm| < 1. The

terms A1(z), C(z), and Dn(z) are defined in (24), (23), and (25), and for n = (n1, · · · , nm),

D̂n(z) =

m∏
i=2

(
1− zi−1

zi

)ni
(
1− zi

zi−1

)ni−1 ∑
U, Û∈L

n1
z1

×···×Lnm
zm

Hn(U, Û)R̂n(U, Û)En(U, Û) (35)

where

R̂n(U, Û) = Rn(U, Û)

nm∑
j=1

(u
(m)
j + û

(m)
j ). (36)

Proof. In the formula (22), βm appears in two places. Since

dC(z)

dβm
=

1

p1/2
A1(zm)C(z) and

dEn(U, Û)

dβm
=

1

p1/2
En(U, Û)

nm∑
j=1

(u
(m)
j + û

(m)
j ),

we find that

∂

∂βm
P
(
∩m−1
k=1

{
Hp(γk, τk) ≥ βk

}
∩
{
Hp(γm, τm) ≤ βm

})
=

(−1)m−1

(2πi)mp1/2

∮
· · ·
∮ (

A1(zm)C(z)
∑

n∈{0,1,··· }m

Dn(z)

(n!)2
+ C(z)

∑
n∈{0,1,··· }m

D̂n(z)

(n!)2

) m∏
i=1

dzi
zi

(37)

where the sums are over n ∈ {0, 1, · · · }m. Note the fact that E(U, Û) decays super-exponentially fast as a

variable tends to ∞ in the sets Lz where the rate of decay depends only on |z| ∈ (0, 1). Hence the summation

of Dn and D̂n are uniformly convergent. Thus, we can change the order of the integral with respect to z

and summation over n. Now Lemma 2.3 below shows that the integral is zero if one of the components of n

is zero. Thus, we obtain the result.

Recall that the contours for the integral are circles satisfying 0 < |z1| < · · · < |zm| < 1.

Lemma 2.3. If one of the components of n = (n1, · · · , nm) is zero, then∮
· · ·
∮

A1(zm)C(z)Dn(z)

m∏
i=1

dzi
zi

= 0 (38)

and ∮
· · ·
∮

C(z)D̂n(z)

m∏
i=1

dzi
zi

= 0. (39)

Proof. The case when m = 1 can be checked directly. Note that in this case Dn(z) = 1, D̂n(z) = 0. And the

functions C(z), A1(z1)/z1 are both analytic at z1 = 0. These imply the two identities (38) and (39). Below

we assume that m ≥ 2.

Let n = (n1, · · · , nm) be given and one of the components is zero. Let k be the smallest integer such

that nk = 0. We will show the integrands of both integrals are analytic as a function of zk in the integration

domain, and thus the integrals are zero.
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We first focus on the integral in (38). Since nk = 0, the set Lnk
zk

is empty. Thus, the integrand does not

contain any factor involving U (k) and Û (k), which depend on zk. If k = 1, the only term that depends on z1
in A1(zm)C(z)Dn(z)

∏m
i=1

1
zi

is the factor

1

z1 − z2
e−

∑n2
j=1(h1(u

(2)
j )+h1(û

(2)
j ))

(
1− z1

z2

)n2

eβ1A1(z1)+τ1A2(z1)+2B(z1)−2B(z2,z1).

Since |z1| < |z2|, this function is analytic at z1 = 0. This implies the integrand in (38) is analytic in z1
around the origin. Hence (38) holds when k = 1.

If 1 < k < m, the only term that depends on zk in A1(zm)C(z)Dn(z)
∏m

i=1
1
zi

is

1

(zk−1 − zk)(zk − zk+1)
e−

∑nk−1
i=1 (hk(u

(k−1)
i )+hk(û

(k−1)
i ))−

∑nk+1
j=1 (hk(u

(k+1)
j )+hk(û

(k+1)
j ))

×
(
1− zk

zk−1

)nk−1
(
1− zk

zk+1

)nk+1

e(βk−βk−1)A1(zk)+(τk−τk−1)A2(zk)+2B(zk)−2B(zk,zk−1)−2B(zk+1,zk).

As a function of zk, it is of the form

(zk − zk−1)
nk−1−1(zk − zk+1)

nk+1−1 × (a term analytic in |zk| < 1)

Since nk−1 ≥ 1, the first factor is analytic in zk. On the other hand, due to the contour conditions, the

second factor is analytic in |zk| < |zk+1|. Thus, the whole term is analytic at zk = 0, and we obtain (38)

when 1 < k < m.

If k = m, the only term that depends on zm in A1(zm)C(z)Dn(z)
∏m

i=1
1
zi

is

A1(zm)

zm(zm−1 − zm)
e−

∑nm−1
j=1 (hm(u

(m−1)
j )+hm(û

(m−1)
j ))

×
(
1− zm

zm−1

)nm−1

e(βm−βm−1)A1(zm)+(τm−τm−1)A2(zm)+2B(zm)−2B(zm,zm−1).

As a function of zm, it is of the form

(zm − zm−1)
nm−1−1A1(zm)

zm
× (a term analytic in |zm| < 1)

Since nm−1 ≥ 1, the above is analytic at zm = zm−1. On the other hand, since A1(0) = 0, the term A1(zm)
zm

is analytic at zm = 0. Thus, the integrand in (38) is analytic in zm within the integration contour. We

obtain (38).

The proof of (39) is exactly the same as that of (38) when k < m since D̂n(z) is the same as Dn(z)

except an extra factor
∑nm

j=1(u
(m)
j + û

(m)
j ) which does not depend on zk. When k = m, we have nm = 0.

This factor
∑nm

j=1(u
(m)
j + û

(m)
j ) = 0 hence the integrand is zero. We still have (39).

From the above results, we can write the probability in (20) as (44) below.

Definition 2.4. For z = (z1, · · · , zm) with 0 < |z1| < · · · < |zm| < 1, define

C•(z) = C(z)

m−1∏
i=1

zi − zi+1

zi
=

m∏
i=1

e
βi

p1/2
A1(zi)+

τi

p3/2
A2(zi)

e
βi

p1/2
A1(zi+1)+

τi

p3/2
A2(zi+1)

e2B(zi,zi)−2B(zi+1,zi) (40)
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where A1, A2, B are given in (24), and we set zm+1 = 0. Define

D•
n(z) =

∑
U, Û∈L

n1
z1

×···×Lnm
zm

Hn(U, Û)Rn(U, Û)En(U, Û),

D̂•
n(z) =

∑
U, Û∈L

n1
z1

×···×Lnm
zm

Hn(U, Û)R̂n(U, Û)En(U, Û)
(41)

where the functions Hn(U, Û), Rn(U, Û), and En(U, Û) are defined in (29), (31), and (32), while the function

R̂n(U, Û) is defined in (35). Also define

T •
n(z) =

m∏
i=2

(
1− zi−1

zi

)ni
(
1− zi

zi−1

)ni−1−1

. (42)

Corollary 2.5. Let N = {1, 2, · · · } and 1 = (1, · · · , 1︸ ︷︷ ︸
m

). Let C•(z), D•
n(z), and D̂•

n(z) be given above with

the parameters

τi = ti, γi =
xi

ℓ1/4
, βi = tiℓ+ hiℓ

1/4 for i = 1, · · · ,m, (43)

where 0 < t1 < · · · < tm−1 < 1, x1, · · · , xm−1 ∈ R, h1, · · · , hm−1 ∈ R, and tm = 1, xm = 0, hm = 0. Then,

P

(
m−1⋂
i=1

{H( xi

ℓ1/4
, ti)− tiℓ

ℓ1/4
≥ hi

} ∣∣∣∣Hp(0, 1) = ℓ

)
=

Pm,1 + Pm,2 + P̂m,1 + P̂m,2

P1,1 + P1,2 + P̂1,1 + P̂1,2

(44)

where

Pm,1 =
(−1)m−1

(2πi)m

∮
· · ·
∮

A1(zm)C•(z)D•
1(z)T

•
1 (z)

m∏
i=1

dzi
zi

,

Pm,2 =
(−1)m−1

(2πi)m

∑
n∈Nm\{1}

1

(n!)2

∮
· · ·
∮

A1(zm)C•(z)D•
n(z)T

•
n(z)

m∏
i=1

dzi
zi

,

P̂m,1 =
(−1)m−1

(2πi)m

∮
· · ·
∮

C•(z)D̂•
1(z)T

•
1 (z)

m∏
i=1

dzi
zi

,

P̂m,2 =
(−1)m−1

(2πi)m

∑
n∈Nm\{1}

1

(n!)2

∮
· · ·
∮

C•(z)D̂•
n(z)T

•
n(z)

m∏
i=1

dzi
zi

.

(45)

2.4 Four propositions

We analyze the equation (44) to prove Theorems 1.2–1.4. We will see that the main contributions to the limit

comes from
P̂m,1

P̂1,1
for all three Cases. There are four propositions in this subsection. Proposition 2.8 computes

the limit of P̂m,1. Proposition 2.9 shows that Pm,1 is of a smaller order. Similarly, Proposition 2.10 shows

that Pm,2 and P̂m,2 are also of smaller orders. Probabilistic interpretations of the limits from Proposition

2.8 are obtained in Proposition 2.11. In the next subsection, we prove the main theorems assuming these

four propositions. The proofs of these propositions are the main analysis of this paper and they are given in

Section 4 and 5.

All results in this subsection hold uniformly for the parameters in compact subsets of 0 < t1 < · · · <
tm−1 < 1, (x1, · · · , xm−1) ∈ Rm−1 ∈ R, (h1, · · · , hm−1) ∈ Rm−1 although we do not state this fact explicitly.

We first need some definitions.
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Definition 2.6. For every vector a = (a1, · · · , am) of real numbers, we denote

∆ai =

{
a1, i = 1,

ai − ai−1, 2 ≤ i ≤ m.
(46)

Definition 2.7. For a = (a1, · · · , am) ∈ Rm satisfying 0 < a1 < · · · < am and b = (b1, · · · , bm) ∈ Rm,

define

S∞(a,b) =
(−1)m−1

√
2

(2πi)m

∫
· · ·
∫ m∏

i=2

1

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξidξ1 · · · dξm (47)

where the contours are vertical lines, oriented upward, satisfying Re(ξ1) > · · · > Re(ξm). For w =

(w1, · · · , wm) ∈ Cm satisfying 0 < |w1| < · · · < |wm|, define

Sr(a,b;w) =
(−1)m−1

√
2

rm

∑
ξ1,··· ,ξm

m∏
i=2

1

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξi for r > 0 (48)

where the sum is over the roots ξi of the equations

e−rξi = wi for i = 1, · · · ,m. (49)

Let t = (t1, · · · , tm) = (t1, · · · , tm−1, 1), x = (x1, · · · , xm) = (x1, · · · , xm−1, 0), and h = (h1, · · · , hm) =

(h1, · · · , hm−1, 0). The first proposition is about P̂m,1.

Proposition 2.8. We have

4ℓ

p1/2
e

4
3 ℓ

3
2 P̂m,1 →


S∞(t,h− x)S∞(t,h+ x) for Case 1,∮

· · ·
∮

Sr(t,h− x;w)Sr(t,h+ x;w)

m∏
i=2

(1− wi−1

wi
)

m∏
i=1

dwi

2πiwi
for Case 2,

(50)

and

23/2ℓ5/4p1/2e
4
3 ℓ

3
2 P̂m,1 → S∞(2t, 2h) for Case 3. (51)

The integral contours for Case 2 are counterclockwise circles satisfying 0 < |w1| < · · · < |wm|.

The formula of P̂m,1 in (45) contains D̂1(z), which, from (35), is a series. The above result is obtained

by showing that after scaling z appropriately, the series converges to an integral for Case 1 and to a series

for Case 2. Note that S∞ is an integral while Sr is a series. For Case 3, only one term dominates the series

D̂1(z).

The second proposition shows that Pm,1 is smaller than P̂m,1. Note from our assumptions in section 2.1,

pℓ → ∞ for all three Cases.

Proposition 2.9. There is a constant C > 0 such that∣∣∣∣ ℓ

p1/2
e

4
3 ℓ

3
2 Pm,1

∣∣∣∣ ≤ C√
pℓ

e−
pℓ
2 for Case 1 and 2 (52)

and ∣∣∣∣ℓ5/4p1/2e 4
3 ℓ

3
2 Pm,1

∣∣∣∣ ≤ C√
pℓ

e−
pℓ
2 for Case 3 (53)

eventually.
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The third proposition shows that Pm,2 and P̂m,2 are small.

Proposition 2.10. There are positive constants δ and C such that∣∣∣∣e 4
3 ℓ

3
2 Pm,2

∣∣∣∣ ≤ Ce−δℓ3/2 and

∣∣∣∣e 4
3 ℓ

3
2 P̂m,2

∣∣∣∣ ≤ Ce−δℓ3/2 . (54)

eventually for all three Cases.

The fourth and final proposition is a probabilistic interpretation of the limits in Proposition 2.8. The

result (55) was obtained6 in [16]. Recall the definition of the quotient space Ir = R/rZ and Brownian motions

on it, discussed before Theorem 1.3.

Proposition 2.11. Let a,b, c ∈ Rm satisfying 0 < a1 < · · · < am−1 < am. Recall that ϕt(x) =
1√
2πt

e−
x2

2t is

the density function of the centered Gaussian distribution with variance t > 0 and ϕ
(r)
t ({x}r) =

∑
k∈Z ϕt(x+

kr) is the transition density function of a Brownian motion on Ir at time t, as defined in (14).

(a) ([16, Lemma 3.4]) We have

S∞(a,b) = P
(
B(a1) ≥

b1√
2
, · · · ,B(am−1) ≥

bm−1√
2

| B(am) =
bm√
2

)
ϕam

(
bm√
2
) (55)

where B is a Brownian motion.

(b) For every r ∈ (0,∞),∮
· · ·
∮

Sr(a, c− b;w)Sr(a, c+ b;w)

m∏
i=2

(
1− wi−1

wi

) m∏
i=1

dwi

2πiwi

= P

(
m−1⋂
i=1

{
B2(ai)− distr

(
BIr
1 (ai), {bi}r

)
≥ ci

} ∣∣∣B2(am) = cm,BIr
1 (am) = {bm}r

)
ϕam

(cm)ϕ(r)
am

({bm}r)

(56)

where the contours are circles satisfying 0 < |w1| < · · · < |wm| < 1, and BIr
1 and B2 are independent

Brownian motions on Ir and R, respectively.

2.5 Proof of Theorems 1.2, 1.3, 1.4, and 1.5

We now prove the main theorems assuming Proposition 2.8–2.11. In (44), denote Pm,1+Pm,2+P̂m,1+P̂m,2 =

Pm .

Proof of Theorems 1.2, 1.3, and 1.4. For Case 1, Proposition 2.8, 2.9, and 2.10 imply that

4ℓ

p1/2
e

4
3 ℓ

3
2 Pm → S∞(t,h+ x)S∞(t,h− x).

By Proposition 2.11 (a), recalling that tm = 1 and xm = hm = 0, we find that

Pm

P1
→ P

(
m−1⋂
i=1

{
B′
1(ti) ≥

hi + xi√
2

, B′
2(ti) ≥

hi − xi√
2

} ∣∣∣∣B′
1(1) = B′

2(1) = 0

)

= P

(
m−1⋂
i=1

{√
2min

{
B′
1(ti)−

xi√
2
,B′

2(ti) +
xi√
2

}
≥ hi

} ∣∣∣∣B′
1(1) = B′

2(1) = 0

)
6We need to set ξi = −ui in (47) to find the formula (3.6) of [16].
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for independent Brownian motions B′
1 and B′

2. Using the simple identity min{a, b} = a+b
2 − |a−b|

2 and noting

that B1 := (B′
1 − B′

2)/
√
2 and B2 := (B′

1 + B′
2)/

√
2 are two independent Brownian motions, the above limit

is equal to

P

(
m−1⋂
i=1

{B2(ti)− |B1(ti)− xi| ≥ hi} | B1(1) = B2(1) = 0

)
= P

(
m−1⋂
i=1

{
Bbr
2 (ti)− |Bbr

1 (ti)− xi| ≥ hi

})
(57)

for two independent Brownian bridges Bbr
1 and Bbr

2 . Theorem 1.2 then follows from (20), (44), and Lemma 2.1.

Similarly, for Case 2, Proposition 2.8, 2.9, 2.10 and Proposition 2.11 (b) imply that Pm

P1
converges to

P

(
m−1⋂
i=1

{
B2(ti)− distr

(
BIr
1 (ti), {xi}r

)
≥ hi

} ∣∣∣B2(1) = 0,BIr
1 (1) = {0}r

)

= P

(
m−1⋂
i=1

{
Bbr
2 (ti)− distr

(
Bbr;Ir
1 (ti), {xi}r

)
≥ hi

}) (58)

where Bbr;Ir
1 is a Brownian bridge on Ir, and Bbr

2 is a Brownian bridge on R that is independent of Bbr;Ir
1 .

Theorem 1.3 follows.

Finally, for Case 3, Proposition 2.8, 2.9, 2.10 and Proposition 2.11 (a) again show that Pm

P1
converges to

P

(
m−1⋂
i=1

{
B(2ti) ≥

√
2hi

} ∣∣∣∣B(2) = 0

)
= P

(
m−1⋂
i=1

{
Bbr(ti) ≥ hi

})

where B is a Brownian motion and Bbr is a Brownian bridge on [0, 1]. Thus, we obtain Theorem 1.4.

Proof of Theorem 1.5. Proposition 2.2, Lemma 2.3, and Corollary 2.5 show that

fp(ℓ; 0, 1) =
1

p1/2
(P1,1 + P1,2 + P̂1,1 + P̂1,2)

with t1 = 1, x1 = 0, and ℓ1 = ℓ. Propositions 2.8–2.10 thus imply the result. The equality of the two formula

of c(r) is due to the Poisson summation formula,
∑

k∈Z g(k) =
∑

k∈Z ĝ(k) with ĝ(t) =
∫∞
−∞ g(x)e−2πitxdx,

for suitable functions g.

We prove Proposition 2.8, 2.9, 2.10 and 2.11 in Section 4 and 5. In the next section, we prove a limit

and estimates for a key function that appear in the proofs.

3 Preparations

Let a > 0, b ∈ R, c ∈ R, and d ≥ 0. For ℓ > 0, consider the function from Gℓ : R → C defined by

Gℓ(x) = 3aξ(x)2 + (c− 2b)ξ(x) +
1

ℓ3/4
(
bξ(x)2 − aξ(x)3

)
where ξ(x) = − 2(d+ ix)

1 +
√

1 + 2(d+ix)
ℓ3/4

. (59)

While proving Proposition 2.8, 2.9, and 2.10, we need to analyze the functions Ei,±(s) in (32). In the

appropriate choice of the variable s, Ei,±(s) are related to the function Gℓ with particular values of a, b, c,

and d: see (88). We compute a pointwise limit and uniform bounds of Gℓ(x) in this section.
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3.1 Pointwise limit

Lemma 3.1 (Pointwise limit). For every x ∈ R,

Gℓ(xℓ) → 3a(d+ ix)2 − (c− 2b)(d+ ix) (60)

if ℓ → ∞ and xℓ → x. The convergence is uniform for x in a compact subset of R and for (a, b, c, d) in a

compact subset of (0,∞)× R× R× [0,∞).

Proof. It is clear since ξ(xℓ) → −(d+ ix).

3.2 A lemma

The following simple lemma will be used in the next subsection.

Lemma 3.2. Let A ≥ 0. Let r be a solution to the equation r2 − A
r2 = 1. Then, |r| ≥ 1 + 2A

3(
√
13+1)

if

0 ≤ A ≤ 3 and |r| ≥ 1 + A1/4

3
√
2
if A ≥ 1.

Proof. Solving a quadratic equation, all solutions satisfy

|r| =
(
1 +

√
1 + 4A

2

)1/2

=

(
1 +

2A√
1 + 4A+ 1

)1/2

.

Note that √
1 + y ≥


1 +

y

3
for 0 ≤ y ≤ 3,

1 +

√
y

3
for y ≥ 9/16.

If 0 ≤ A ≤ 3, then 2A√
1+4A+1

≤ A ≤ 3, while if A ≥ 1, then
√
1+4A−1

2 ≥
√
5−1
2 > 9

16 . Hence,

|r| ≥ 1 +
2A

3(
√
1 + 4A+ 1)

if 0 ≤ A ≤ 3

and

|r| ≥ 1 +
1

3

(
2A√

1 + 4A+ 1

)1/2

if A ≥ 1.

The result follows by noting that

√
1 + 4A+ 1 ≤

{√
13 + 1 for 0 ≤ A ≤ 3,

1 +
√
4A+ 1 ≤ 4

√
A for A ≥ 1.

3.3 Uniform estimates

We find a uniform upper bound of |eGℓ(x)| = eReGℓ(x). From its definition, ξ(x) satisfies the equation

ξ(x)2

ℓ3/4
= 2ξ(x) + 2(d+ ix). (61)

Thus,

Gℓ(x) = G1(x) + 2b(d+ ix) where G1(x) = 3aξ(x)2 + cξ(x)− a

ℓ3/4
ξ(x)3. (62)
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Consider G1(x). Note that G1(x) = − a
ℓ3/4

(ξ(x)− ℓ3/4)3 + 3aξ(x)ℓ3/4 − aℓ3/2 + cξ(x). Write

ξ(x)

ℓ3/4
− 1 = −vx + iwx.

where vx > 0 and wx ∈ R. The quadratic equation (61) for ξ(x) implies that vx and wx satisfy

v2x − w2
x = 1 + 2dℓ−3/4 and vxwx = −xℓ−3/4. (63)

Using the first equation, we see that Re((ξ(x)− ℓ3/4)3) = (−v3x + 3vxw
2
x)ℓ

9/4 = (2v3x − 3vx)ℓ
9/4 − 6dvxℓ

3/2.

Hence,

Re (G1(x)) = −2a(v3x − 1)ℓ3/2 − (c− 6ad)vxℓ
3/4 + cℓ3/4. (64)

In order to obtain an upper bound of Re (G1(x)), we need an estimate of vx.

Lemma 3.3. Define

δx =
vx

(1 + 2dℓ−3/4)1/2
− 1. (65)

Then, there is a constant c0 > 0 such that if ℓ ≥ c0,

δx ≥ x2

10ℓ3/2
for |x| ≤

√
3ℓ3/4

and

δx ≥ |x|1/2

5ℓ3/8
for |x| ≥ 6

5
ℓ3/4.

Proof. From (63), v2x satisfies the equation

v2x − B

v2x
= C where B = x2ℓ−3/2 and C = 1 + 2dℓ−3/4.

Let r = C−1/2vx and apply Lemma 3.2 with A = B
C2 . Note that since vx > 0, we have r > 0. Also note that

r = 1 + δx. Thus, Lemma 3.2 implies that

δx ≥ 2x2ℓ−3/2

3(
√
13 + 1)(1 + 2dℓ−3/4)2

for |x| ≤
√
3ℓ3/4(1 + 2dℓ−3/4)

and

δx ≥ |x|1/2ℓ−3/8

3
√
2(1 + 2dℓ−3/4)1/2

for |x| ≥ ℓ3/4(1 + 2dℓ−3/4).

We take ℓ large enough so that 2dℓ−3/4 ≤ 1
5 . The result follows by noting that 2

3(
√
13+1)(6/5)2

> 1
10 and

1

3
√
2
√

6/5
> 1

5 .

From the definition (65),

vx = (1 + 2dℓ−3/4)1/2(1 + δx). (66)

In (64), Re (G1(x)) is a cubic function of vx. We write the linear term of vx in terms of a linear term δx
using (66). For the cubic term of vx, we note that since (1 + x)c ≥ 1 + cx for all x > 0 and c ≥ 1,

v3x =(1 + 2dℓ−3/4)3/2(1 + δx)
3 ≥ (1 + 3dℓ−3/4)(1 + 3δx).

Thus, since a > 0 and d > 0, we find that

Re (G1(x)) ≤ −6a(1 + 3dℓ−3/4)δxℓ
3/2 − (c− 6ad)(vx − 1)ℓ3/4 ≤ −6aδxℓ

3/2 − (c− 6ad)(vx − 1)ℓ3/4 (67)
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Since (1 + x)1/2 ≤ 1 + 1
2x for all x > 0, we see from (66) that vx ≤ (1 + dℓ−3/4)(1 + δx). Therefore, we find

that

Re (G1(x)) ≤
(
−6aδxℓ

3/2 + |c− 6ad|ℓ3/4 + |c− 6ad|d
)
δx + |c− 6ad|d. (68)

Thus, since a > 0, there is a constant c0 ≥ 1 such that if ℓ ≥ c0, then

Re (G1(x)) ≤ −5aℓ3/2δx + |c− 6ad|d. (69)

Since Re(Gℓ(x)) = Re(G1(x)) + 2bd from (62), (69), and Lemma 3.3 imply the following bound.

Lemma 3.4. Uniformly for (a, b, c, d) in a compact subset of (0,∞) × R × R × [0,∞), there are constants

C > 0 and c0 > 0 such that if ℓ ≥ c0, then

|eGℓ(x)| ≤ Ce−
a
2 x

2

for |x| ≤
√
3ℓ3/4 (70)

and

|eGℓ(x)| ≤ Ce−aℓ9/8
√

|x| for |x| ≥ 6

5
ℓ3/4. (71)

Corollary 3.5. Let Gℓ(x) be the function defined in (59). Uniformly for (a, b, c, d) in a compact subset of

(0,∞)× R× R× [0,∞), there are constants c0 ≥ 1, c1 > 0, and c2 > 0 such that

|eGℓ(x)| ≤ c1e
−c2

√
|x| for all x ∈ R (72)

and for all ℓ ≥ c0.

Proof. The result follows from Lemma 3.4 by noting ℓ9/8 ≥ 1 and x2 + 1 ≥
√

|x| for all x ∈ R.

4 Asymptotic analysis

We prove Proposition 2.8, 2.9, and 2.10 in this section. The proofs are almost uniform for all three cases

except that we need to add the restriction p ≪ ℓ5/4 in the proof of Proposition 2.10 for Case 1. The remaining

situation for Case 1 is handled separately at the end of this section.

4.1 Choice of contours

It is convenient to introduce the notation

r = pℓ1/4. (73)

Note that r → ∞ for Case 1, r is a constant for Case 2, and r → 0 for Case 3.

The contours for the integrals of (45) are circles around the origin satisfying 0 < |z1| < · · · < |zm| < 1.

We make the following specific choice of the radii. The choice is the same for all three Cases except in the

last subsection which we change the analysis slightly. Let

ρ1 > · · · > ρm > 0

be real numbers which we keep fixed. We choose the contours as

zi = e−
ℓp
2 −rρi+iθi , θi ∈ (−π, π], (74)

for each i = 1, · · · ,m. Throughout this section except for the last subsection 4.10, we assume that zi are

given by the above equation. We write z = (z1, · · · , zm).
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4.2 Bound of C•

The function C•(z) is given by the formula (40). For every a > 0, polylogarithm functions satisfy

|Lia(z)| =

∣∣∣∣∣
∞∑

n=1

zn

na

∣∣∣∣∣ ≤
∞∑

n=1

|z|n ≤ 2|z| for |z| ≤ 1/2. (75)

Thus, if |z| ≤ 1/2, then (see (24))

|A1(z)| =
∣∣∣∣− 1√

2π
Li3/2(z)

∣∣∣∣ ≤ |z| and |A2(z)| =
∣∣∣∣− 1√

2π
Li5/2(z)

∣∣∣∣ ≤ |z|. (76)

Similarly, for |z|, |z′| ≤ 1/2,

|B(z, z′)| =

∣∣∣∣∣∣ 14π
∞∑

k,k′=1

zk(z′)k
′

(k + k′)
√
kk′

∣∣∣∣∣∣ ≤ 1

4π

∞∑
k,k′=1

|z|k|z′|k
′
≤ |z||z′|. (77)

We find the following bound.

Lemma 4.1. For z given in (74), there is a constant c > 0 such that

|C•(z)− 1| ≤ cℓp−1/2e−
ℓp
2 ecℓp

−1/2e−
ℓp
2

for all θ ∈ (−π, π]m and ℓ, p > 0 satisfying ℓp ≥ 2. Furthermore, |C•(z)| ≤ 2 and C•(z) → 1 uniformly in

θ ∈ (−π, π]m eventually for all three Cases.

Proof. From (74), |zi| ≤ e−
ℓp
2 . If ℓp ≥ 2, then |zi| ≤ e−1 ≤ 1/2. From the formula (40) of C•(z), the bounds

(76) and (77), and the choice of the parameters (43), we find, using the inequality |ew − 1| ≤ |w|e|w| for all

complex number w, that there is a constant c > 0 so that

|C•(z)− 1| ≤ c(ℓp−1/2 + p−3/2)
( m∑
i=1

|zi|
)
ec(ℓp

−1/2+p−3/2)
∑m

i=1 |zi|.

Since ℓp ≥ 2, we see ℓp−1/2 + p−3/2 ≤ 3
2ℓp

−1/2. Using |zi| ≤ e−
ℓp
2 , we obtain the bound after replacing the

constant c by 2c
3m .

Note that ℓp−1/2e−
ℓp
2 ≤ 1

(ℓp4)1/2
(ℓp)3/2e−

ℓp
2 . In all Cases, ℓp ≥ log ℓ → ∞. Hence, the term (ℓp)3/2e−

ℓp
2 →

0. For Case 1 and 2, The term (ℓp4)1/2 is bounded below, and thus, ℓp−1/2e−
ℓp
2 → 0. For Case 3, we have

ℓ−1 log ℓ ≪ p. Thus, ℓp−1/4 ≪ ℓ5/4

(log ℓ)1/4
and ℓp ≥ 4 log ℓ eventually. Thus, ℓp−1/2e−

ℓp
2 ≤ ℓ5/4

(log ℓ)4 e
−2 log ℓ → 0.

Hence, C•(z) → 1 for all three Cases, which also implies that |C•(z)| ≤ 2 eventually.

4.3 The functions ui(k)

For |z| < 1, a complex number u is in the discrete set Lz = {u : e−u2/2 = z, Re(u) < 0} if and only if it is of

the form u = −
√
−2 log z + 4πik for some k ∈ Z. With (74) in mind, define the function

ui(k) = ui(k; θi) = −
√
ℓp+ 2rρi − 2iθi + 4πik, k ∈ Z (78)

for i = 1, · · · ,m, where the branch of the square root is chosen so that Re(ui(k)) < 0. We also define

ui(k
(i)) = (ui(k

(i)
1 ), · · · , ui(k(i)ni

)) for k(i) = (k
(i)
1 , · · · , k(i)ni

) ∈ Zni . (79)
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Furthermore, we write

U(k) = (u1(k
(1)), · · · , um(k(m))) for k = (k(1), · · · ,k(m)) ∈ Zn = Zn1 × · · · × Znm (80)

for n = (n1, · · · , nm).

Using these notations, the functions in (41) become

D•
n(z) =

∑
k,k̂∈Zn

s•n(k, k̂) and D̂•
n(z) =

∑
k,k̂∈Zn

ŝ•n(k, k̂) (81)

with

s•n(k, k̂) := Hn(U(k),U(k̂))Rn(U(k),U(k̂))En(U(k),U(k̂)),

ŝ•n(k, k̂) := Hn(U(k),U(k̂))R̂n(U(k),U(k̂))En(U(k),U(k̂)),
(82)

where by k ∈ Zn, we mean that k = (k(1), · · · ,k(m)) ∈ Zn1 × · · · × Znm .

4.4 Bound of Hn

The function Hn(U, Û) in (29) involves the function

h(w, z) = − 1√
2π

∫ w

−∞
Li1/2(ze

(w2−y2)/2)dy = − 1√
2π

∫ Re(w)

−∞
Li1/2(ze

(w2−(x+iIm(w))2)/2)dx

for Re(w) < 0. From (75), we see that for Re(w) < 0 and |z| ≤ 1/2,

|h(w, z)| ≤ 2√
2π

∫ Re(w)

−∞
|z|e(Re(w)2−x2)/2dx ≤ |z|. (83)

Lemma 4.2. For z given in (74), we have

|Hn(U(k),U(k̂))− 1| ≤ 8|n|e−
ℓp
2 e8|n|e

− ℓp
2 ≤ 4|n|e4|n|

for all n ∈ Nm, k, k̂ ∈ Zn, θ ∈ (−π, π]m, and ℓ, p > 0 satisfying ℓp ≥ 2. As a consequence,

|Hn(U(k),U(k̂))| ≤ 5|n|e4|n|.

Proof. Using the inequality |ew − 1| ≤ |w|e|w| and the estimate (83),

|Hn(U, Û)− 1| ≤ 8|n|( max
1≤i≤m

|zi|)e8|n|(max1≤i≤m |zi|) ≤ 4|n|e4|n|

for all U, Û ∈ Lz1 × · · · ×Lzm if |z1|, · · · , |zm| ≤ 1/2. For z given in (74), |zi| ≤ e−
ℓp
2 ≤ 1/2 for all i if ℓp ≥ 2.

Inserting U = U(k) and Û = U(k̂), we obtain the result.

4.5 Bound and limits of En

Recall from (32) and (43) that for n = (n1, · · · , nm),

En(U, Û) =

m∏
i=1

ni∏
ji=1

Ei,+(u
(i)
ji
)Ei,−(û

(i)
ji
) where Ei,±(s) = e

− ∆ti

3p3/2
s3± ∆xi

2pℓ1/4
s2+

ℓ∆ti+ℓ1/4∆hi

p1/2
s
.

We compute the limit and bounds of En(U(k),U(k̂)) where U(k) is the function from (80). For the limit,

we only need the case when n = 1, and thus we do not state the results when n ̸= 1.
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Define

Ẽi,±(s) = Ei,±(s)e
2∆ti

3 ℓ3/2+(∆hi∓
∆xi
2 )ℓ3/4 . (84)

Then,

En(U(k),U(k̂)) = e−
4
3 ℓ

3/2(
∑m

i=1 ni∆ti)−2ℓ3/4(
∑m

i=1 ni∆hi)
m∏
i=1

nj∏
j=1

Ẽi,+(ui(k
(i)
j ))Ẽi,−(ui(k̂

(i)
j )) (85)

where ui(k) is the function from (78). When n = 1, since
∑m

i=1 ∆hi = 0 and
∑m

i=1 ∆ti = 1, this formula

becomes

E1(U(k),U(k̂)) = e−
4
3 ℓ

3/2
m∏
i=1

Ẽi,+(ui(k
(i)
1 ))Ẽi,−(ui(k̂

(i)
1 )). (86)

The function Ẽi,±(ui(k)) is expressible in terms of the function Gℓ from (59). Recall the function ξ(x)

in (59), which contains the parameter d. Comparing with the formula (78) of ui, we find that

ui(k) = −
√
ℓp
(
1− 1

ℓ3/4
ξ
(2πk − θi

r

))
with d = ρi. (87)

A direct computation shows that

Ẽi,±(ui(k)) = e
Gℓ

(
2πk−θi

r

)
(88)

with the parameters

a =
∆ti
3

, b = ±∆xi

2
, c = ∆hi, and d = ρi. (89)

Thus, the results from Subsection 3 are applicable.

We first find a limit of E1(U(k),U(k̂)). For y = (y1, · · · , ym) ∈ Rm, we use the notation [y] =

([y1], · · · , [ym]).

Lemma 4.3 (Limit of En when n = 1). For Case 1, for every y, ŷ ∈ Rm,

e
4
3 ℓ

3/2

E1

(
U([ry]),U([rŷ])

)
→

m∏
i=1

e∆ti(ρi+2πiyi)
2−(∆hi−∆xi)(ρi+2πiyi))+∆ti(ρi+2πiŷi))

2−(∆hi+∆xi)(ρi+2πiŷi)).
(90)

uniformly in θ ∈ (−π, π]m. For Case 2, for every k,k′ ∈ Zm,

e
4
3 ℓ

3/2

E1(U(k),U(k̂)) →
m∏
i=1

e∆tiξi(ki)
2−(∆hi−∆xi)ξi(ki)+∆tiξi(k̂i)

2−(∆hi+∆xi)ξi(k̂i) (91)

uniformly in θ ∈ (−π, π]m, where

ξi(k) = ρi +
1

r
(2πik − iθi). (92)

For Case 3, if

θi = rφi

for i = 1, · · · ,m, then

e
4
3 ℓ

3/2

E1(U(0),U(0)) →
m∏
i=1

e2∆ti(ρi−iφi)
2−2∆hi(ρi−iφi) (93)

uniformly for φ = (φ1, · · · , φm) in a compact subset of Rm.
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Proof. From (86), it is enough to compute the limits of Ẽi,±(ui(k)) = eGℓ(
2πk−θi

r ). We use Lemma 3.1. From

(89), d = ρi. Recall that r → ∞ for Case 1, r is a constant for Case 2, and r → 0 for Case 3. Thus, for Case

1,

d+ i
2π[ry]− θi

r
= ρi + i

2π[ry]− θi
r

→ ρi + 2πiy,

and hence Lemma 3.1 yields the result (90). For Case 2, d + i 2πk−θi
r = ρi + i 2πk−θi

r = ξi(k) and we obtain

(91). For Case 3, with θi = rφi,

d− i
θi
r
= ρi − iφi.

Thus, we obtain (93).

We now find a uniform bound for En(U(k),U(k̂)). We start with the following result.

Lemma 4.4. There are constants c0 ≥ 1, c1 > 0, and c∗ > 0 such that∣∣∣En(U(k),U(k̂))
∣∣∣ m∏
i=1

e
4ni∆ti

3 ℓ3/2+2ni∆hiℓ
3/4

≤ c
|n|
1

m∏
i=1

ni∏
j=1

e−2c∗

√
1
r |k

(i)
j − θi

2π |−2c∗

√
1
r |k̂

(i)
j − θi

2π | (94)

for all n ∈ Nm, k, k̂ ∈ Zn, θ ∈ (−π, π]m, and ℓ ≥ c0. As a consequence,∣∣∣En(U(k),U(k̂))
∣∣∣ m∏
i=1

e
4ni∆ti

3 ℓ3/2+2ni∆hiℓ
3/4

≤ c
|n|
1

m∏
i=1

ni∏
j=1

e−c∗

√
1
r |k

(i)
j |−c∗

√
1
r |k̂

(i)
j |. (95)

Proof. Since Ẽi,±(ui(k)) = eGℓ(
2πk−θi

r ) with the parameters (89), Corollary 3.5 gives a bound: there are

constants c0 ≥ 1, c1 > 0, and c2 > 0 such that

|Ẽi,±(ui(k))| ≤ c1e
−c2

√∣∣∣ 2πk−θi
r

∣∣∣
(96)

for all k ∈ Z, θ ∈ (−π, π], and ℓ ≥ c0. Thus, from (85), we obtain the bound (94) where we replaced c21 by

c1 and c2
√
2π by 2c∗. The bound (95) follows from (94) since∣∣∣∣k − θ

2π

∣∣∣∣ ≥ |k|
2

≥ |k|
4

(97)

for every k ∈ Z and θ ∈ (−π, π].

When n = 1, due to (86), the above result implies the next bound.

Corollary 4.5 (Bound of En for n = 1). Suppose n = 1. With the same constants c0 ≥ 1, c1 > 0, and

c∗ > 0 in Lemma 4.4,

e
4
3 ℓ

3/2
∣∣∣E1(U(k),U(k̂))

∣∣∣ ≤ cm1

m∏
i=1

e−2c∗

√
1
r |ki−

θi
2π |−2c∗

√
1
r |k̂i−

θi
2π | (98)

and

e
4
3 ℓ

3/2
∣∣∣E1(U(k),U(k̂))

∣∣∣ ≤ cm1

m∏
i=1

e−c∗

√
|ki|
r −c∗

√
|k̂i|
r (99)

for all k, k̂ ∈ Zm, θ ∈ (−π, π]m, and ℓ ≥ c0.

For the case when n ̸= 1, we have the following estimate. We use the fact that t1, · · · , tm−1 are distinct.
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Corollary 4.6 (Bound of En for n ̸= 1). Let c∗ > 0 be the constant from Lemma 4.4. There are positive

constants c0, δ, and c2 such that

e
4
3 ℓ

3/2
∣∣∣En(U(k),U(k̂))

∣∣∣ ≤ e−
4δ
3 ℓ3/2−c2|n|ℓ3/2

m∏
i=1

ni∏
j=1

e−c∗

√
1
r |k

(i)
j |−c∗

√
1
r |k̂

(i)
j | (100)

for all n ∈ Nm \ {1}, k, k̂ ∈ Zn, θ ∈ (−π, π]m, and ℓ ≥ c0.

Proof. Since ∆ti are positive constants (recall that t1, · · · , tm−1 are distinct) that add up to 1, we find that

m∑
i=1

ni∆ti = 1 +

m∑
i=1

(ni − 1)∆ti ≥ 1 + min
1≤i≤m

{∆ti} for every n ∈ Nm \ {1}.

Let c and δ be any positive constants satisfying 1 + min1≤i≤m{∆ti} = 1+δ
1−c . Then,

(1− c)

m∑
i=1

ni∆ti ≥ 1 + δ for all n ∈ Nm \ {1}. (101)

This inequality implies that

m∑
i=1

ni∆ti ≥ 1 + δ + c

m∑
i=1

ni∆ti ≥ 1 + δ + c|n| min
1≤i≤m

{∆ti}

for all n ∈ Nm \ {1}. Thus,

log

(
c
|n|
1

m∏
i=1

e−
4ni∆ti

3 ℓ3/2−2ni∆hiℓ
3/4

)

≤ −4(1 + δ)

3
ℓ3/2 − |n|ℓ3/2

(
4c

3
min

1≤i≤m
{∆ti} − 2ℓ−3/4 max

1≤i≤m
|∆hi| − ℓ−3/2 log |c1|

)
.

The last parenthesis term is larger than or equal to a positive constant c2 if ℓ is large enough. Thus, we

obtain the result from Lemma 4.4 after adjusting the constant c0.

4.6 Bounds and limits of Rn and R̂n

From (31),

|Rn(U(k),U(k̂))| =
m∏
i=1

ni∏
ji=1

1

|ui(k(i)ji
)ui(k̂

(i)
ji
)|

m∏
i=0

∣∣∣K(U (i),−Û (i+1); Û (i),−U (i+1))
∣∣∣ (102)

with U (i) = ui(k
(i)) and Û (i) = ui(k̂

(i)) and the convention that U (0) = Û (0) = U (m+1) = Û (m+1) = ∅.
Recall from (30) that

K(X;Y ) = det

(
1

xi + yj

)a

i,j=1

=

∏
1≤i<j≤a(xj − xi)(yj − yi)∏a

i,j=1(xi + yj)
(103)

for X = (x1, · · · , xa) and Y = (y1, · · · , ya).

From the definition (78), we have a trivial bound

|ui(k)| ≥
√
ℓp (104)

for all i = 1, · · · ,m and k ∈ Z.
To estimate (102), we need the following lemmas.
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Lemma 4.7. For every i, i′ = 1, · · · ,m and k, k′ ∈ Z,

|ui(k) + ui′(k
′)| ≥

√
ℓp. (105)

Proof. From the definition (78), Re(ui(k)
2) > 0 and Re(ui(k)) < 0. Thus, arg(−ui(k)) ∈ (−π/4, π/4). Using

polar forms −ui(k) = ceiφ and −ui′(k
′) = c′eiφ

′
for some c, c′ > 0 and φ,φ′ ∈ (−π/4, π/4), we find that

|ui(k) + ui′(k
′)| = |c+ c′ei(φ

′−φ)| ≥ |c+ c′ cos(φ− φ′)| ≥ c = |ui(k)| ≥
√

ℓp

for all i, i′ and k, k′. The last inequality is due to (104).

Lemma 4.8. We have

|ui(k)| ≤ 5
√
ℓp+ 5

√
|k| (106)

for all i = 1, . . . ,m, k ∈ Z, and ℓ, p > 0 satisfying ℓ3 ≥ 16ρ41 and ℓp ≥ 1.

Proof. If ℓ3 ≥ 16ρ41, then 2rρi ≤ 2rρ1 ≤ ℓp (recall (73)). Thus, (see (78))

|ui(k)|4 = (ℓp+ 2rρi)
2 + (4πk − 2θi)

2 ≤ 4(ℓp)2 + (4π|k|+ 2π)2 ≤ 4(ℓp)2 + 32π2|k|2 + 8π2.

for all θi ∈ (−π, π]. Hence, for ℓp ≥ 1,

|ui(k)| ≤
(
(4 + 8π2)(ℓp)2 + 32π2|k|2

)1/4 ≤ (4 + 8π2)1/4
√
ℓp+ (32π2)1/4

√
|k|.

Since (4 + 8π2)1/4 ≈ 3.01 and (32π2)1/4 ≈ 4.21, we obtain the result.

Lemma 4.9. (a) For every r > 0, a ≥ 0 and ϵ > 0,

1

ra

∞∑
k=1

|k|ae−ϵ
√

k
r ≤ r

∫ ∞

1
r

yae−ϵ
√

y
2 dy. (107)

(b) Recall that r = ℓ1/4p. For every ϵ > 0 and a ≥ 0, there is a positive constant C = C(a, ϵ) such that

∞∑
k=−∞

|ui(k)|ae−ϵ

√
|k|
r ≤ C(ℓp)

a
2+1

(108)

for all i = 1, . . . ,m and ℓ, p > 0 satisfying ℓ3 ≥ 16ρ41 and ℓp ≥ 1.

Proof. (a) For k ≥ 1, we have k ≥ k+1
2 ≥ x

2 for all x ∈ [k, k + 1]. Thus,

1

ra

∞∑
k=1

kae−ϵ
√

k
r ≤ 1

ra

∞∑
k=1

∫ k+1

k

xae−ϵ
√

x
2r dx =

1

ra

∫ ∞

1

xae−ϵ
√

x
2r dx = r

∫ ∞

1
r

yae−ϵ
√

y
2 dy.

(b) The result (a) implies that

1

ra

∞∑
k=−∞

|k|ae−ϵ

√
|k|
r ≤ δa=0 + 2rBa where Ba =

∫ ∞

0

yae−ϵ
√

y
2 dy.

Hence, if ℓ3 ≥ 16ρ41 and ℓp ≥ 1, then (106) implies that

∞∑
k=−∞

|ui(k)|ae−ϵ

√
|k|
r ≤ 5a

∞∑
k=−∞

(2a(ℓp)a/2 + 2a|k|a/2)e−ϵ

√
|k|
r ≤ 10a

(
(ℓp)a/2(1 + 2rB0) + 2ra/2+1Ba/2

)
.

Since ℓ3 ≥ 16ρ41 implies that r ≤ ℓp
2ρ1

, the above is bounded by a constant times (ℓp)a/2+1 if ℓ3 ≥ 16ρ41 and

ℓp ≥ 1. We thus obtain the result.
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Lemma 4.10. For every ϵ > 0, there is a positive constant C0 such that∣∣∣K(ui(k),−ui′(k̂
′); ui(k̂),−ui′(k

′))
∣∣∣∏n

j=1 |ui(k̂j)|
∏n′

j=1 |ui′(k′j)|

n∏
j=1

e−ϵ
√

1
r |kj |−ϵ

√
1
r |k̂j |

n′∏
j=1

e
−ϵ
√

1
r |k

′
j |−ϵ

√
1
r |k̂

′
j | ≤

(
C0(ℓp)

2

r2

)n+n′
2

(109)

for all two distinct integers i and i′ from {0, · · · ,m + 1}, n, n′ ∈ N, k, k̂ ∈ Zn, k′, k̂′ ∈ Zn′
, and ℓ, p > 0

satisfying ℓ3 ≥ 4ρ41 and ℓp ≥ 1.

Proof. Since K is a Cauchy determinant (103), the left-hand side of (109) is zero if two components of any

of k,k′, k̂, or k̂′ are equal. Thus, it is enough to consider the case that k,k′, k̂, or k̂′ all have distinct

components. Let ϵ > 0 be an arbitrary constant.

For vectors X = (x1, · · · , xa) and Y = (y1, · · · , ya), and scalars f1, · · · , fa, the Hadamard’s inequality

implies that ∣∣∣∣∣K(X;Y )

a∏
p=1

fp

∣∣∣∣∣ =
∣∣∣∣∣det

(
fp

xq + yp

)a

q,p=1

∣∣∣∣∣ ≤
a∏

q=1

√√√√ a∑
p=1

f2
p

(xq + yp)2
.

Thus, ∣∣∣K(ui(k),−ui′(k̂
′); ui(k̂),−ui′(k

′))
∣∣∣∏n

j=1 |ui(k̂j)|
∏n′

j=1 |ui′(k′j)|

n∏
j=1

e−ϵ
√

1
r |k̂j |

n′∏
j′=1

e−ϵ
∑n′

j=1

√
1
r |k

′
j |

≤
n∏

q=1

√√√√ n∑
p=1

e−2ϵ
√

1
r |k̂p|

|ui(kq) + ui(k̂p)|2|ui(k̂p)|2
+

n′∑
p=1

e−2ϵ
√

1
r |k′

p|

|ui(kq)− ui′(k′p)|2|ui′(k′p)|2

×
n′∏
q=1

√√√√ n∑
p=1

e−2ϵ
√

1
r |k̂p|

|ui′(k̂′q)− ui(k̂p)|2|ui(k̂p)|2
+

n′∑
p=1

e−2ϵ
√

1
r |k′

p|

|ui′(k̂′q) + ui′(k′p)|2|ui′(k′p)|2
.

(110)

Consider the first sum. From (104) and (105), |ui(k)| ≥
√
ℓp and |ui(k) + ui′(k

′)| ≥
√
ℓp. Since we assume

that the components of k̂ are distinct, the case a = 0 of (108) implies that there is a constant C1 > 0 so

that
n∑

p=1

e−2ϵ
√

1
r |k̂p|

|ui(kq) + ui(k̂p)|2|ui(k̂p)|2
≤ 1

(ℓp)2

n∑
j=1

e−2ϵ
√

1
r |k̂j | ≤ 1

(ℓp)2

∞∑
k=−∞

e−2ϵ

√
|k|
r ≤ C1

ℓp
(111)

ℓ3 ≥ 16ρ41 and ℓp ≥ 1. The same bound holds for the fourth sum. For the second sum, note that 1
|a−b|2 ≤

2(1+|a|2)(1+|b|2)
|a2−b2|2 for all complex a, b. Since

|ui(kq)
2 − ui′(k

′
p)

2| = |2rρi + i(−2θi + 4πkq)− 2rρi′ − i(−2θi′ + 4πk′p)| ≥ 2r|ρi − ρi′ |, (112)

the a = 0 and a = 2 cases of (108) show that there is a constant C2 > 0 such that

n∑
p=1

e−2ϵ
√

1
r |k′

p|

|ui(kq)− ui′(k′p)|2|ui′(k′p)|2
≤ (1 + |ui(kq)|2)

2r2(ρi − ρi′)2ℓp

n∑
j=1

(1 + |ui′(k
′
j)|2)e−2ϵ

√
1
r |k

′
j |

≤ (1 + |ui(kq)|2)
2r2(ρi − ρi′)2ℓp

∞∑
k=−∞

(1 + |ui′(k)|2)e−2ϵ

√
|k|
r ≤ C2ℓp

r2
(1 + |ui(kq)|2)

(113)

if ℓ3 ≥ 16ρ41 and ℓp ≥ 1. The third sum is similar. Hence, the left-hand side of (109) is bounded by

n∏
j=1

e−ϵ
√

1
r |kj |

n′∏
j=1

e
−ϵ

√
1
r |k̂

′
j |
[

n∏
q=1

√
C1

ℓp
+

C2ℓp

r2
(1 + |ui(kq)|2)

] n′∏
q=1

√
C1

ℓp
+

C2ℓp

r2
(1 + |ui′(k̂′q)|2)

 . (114)
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From (106), since e−2ϵ

√
|k|
r ≤ 1 and e−2ϵ

√
|k|
r

|k|
r ≤ max{xe−2ϵ

√
x : x ≥ 0} < ∞, with additional constants C3

and C4,

e−2ϵ
√

1
r |kq|

(
C1

ℓp
+

C2ℓp

r2
(1 + |ui(kq)|2)

)
≤ C1

ℓp
+

C2ℓp

r2
+

C3(ℓp)
2

r2
+

C4ℓp

r
. (115)

Since ℓ3 ≥ 16ρ41 implies that ℓp
r ≥ 2ρ1, there is a positive constant C0 so that the right-side of (115) is

bounded by C0(ℓp)
2

r2 if ℓ3 ≥ 16ρ41 and ℓp ≥ 1. Hence, (114) is bounded by (C0(ℓp)
2

r2 )(n+n′)/2.

Corollary 4.11 (Bound of Rn and R̂n). For every ϵ > 0, there is a positive constant C0 such that

|Rn(U(k),U(k̂))| ≤
(
C0(ℓp)

2

r2

)|n| m∏
i=1

ni∏
j=1

e2ϵ
√

1
r |k

(i)
j |+2ϵ

√
1
r |k̂

(i)
j | (116)

and

|R̂n(U(k),U(k̂))| ≤ |n|(ℓp)1/2
(
C0(ℓp)

2

r2

)|n| m∏
i=1

ni∏
j=1

e2ϵ
√

1
r |k

(i)
j |+2ϵ

√
1
r |k̂

(i)
j | (117)

for all n ∈ Nm, k, k̂ ∈ Zn, and ℓ, p > 0 satisfying ℓ3 ≥ 16ρ41 and ℓp ≥ 1.

Proof. The bound (116) follows by inserting the estimate (109) in the formula (102). For the bound (117),

we need to modify the argument a little bit. Recall that R̂n(U(k),U(k̂)) is equal to Rn(U(k),U(k̂)) times

the sum
∑nm

j=1(um(k
(m)
j ) + um(k̂

(m)
j )) . We may assume that k

(m)
j are distinct for 1 ≤ j ≤ nm, and k̂

(m)
j

are also distinct since otherwise the left-hand side is zero. Using the lower bound |ui(k)| ≤ 5
√
ℓp + 5

√
k in

(106), ∣∣∣∣∣∣
nm∑
j=1

(um(k
(m)
j ) + um(k̂

(m)
j ))

∣∣∣∣∣∣
≤

10nm

√
ℓp+ 5

nm∑
j=1

√
k
(m)
j e−ϵ

√
1
r k

(m)
j + 5

nm∑
j=1

√
k̂
(m)
j e−ϵ

√
1
r k̂

(m)
j

 nm∏
j=1

eϵ
√

1
r |k

(m)
j |+ϵ

√
1
r |k̂

(m)
j |

(118)

Note that the maximum of the function
√
xe−ϵ

√
x/r over x ∈ [0,∞] is C

√
r. Here C is a positive constant.

Also note that 2ρ1r < ℓp by our assumption ℓ3 ≥ 16ρ41. Hence the left hand side of (118) is bounded by a

constant times |n||ℓp|1/2
∏m

i=1

∏ni

j=1 e
ϵ
√

1
r |k

(i)
j |+ϵ

√
1
r |k̂

(i)
j |. Combining with the estimate (116) and adjusting

the ϵ value accordingly we obtain (117).

The exponential bounds of Corollary 4.11 are enough for n ̸= 1. However, for n = 1, we need a stronger

estimate. In the next lemma, we obtain a polynomial bound in this case. Note that when n = 1, the product

formula of the Cauchy determinant implies that

R1(U, Û) = (−1)m
m∏
i=1

1

(ui + ûi)2uiûi

m∏
i=2

(ui + ûi−1)(ûi + ui−1)

(ui − ui−1)(ûi − ûi−1)
(119)

and R̂1(U, Û) = (um + ûm)R1(U, Û). We insert U = U(k) and Û = U(k̂) where k = (k1, · · · , km) ∈ Nm and

k̂ = (k̂1, · · · , k̂m) ∈ Nm.

Lemma 4.12 (Bound of Rn and R̂n for n = 1). There is a polynomial P of 2m variables such that

(ℓp)2r2m−2|R1(U(k),U(k̂))| ≤ |P
(k
r
,
k̂

r

)
| and (ℓp)3/2r2m−2|R̂1(U(k),U(k̂))| ≤ |P

(k
r
,
k̂

r

)
|

for all k, k̂ ∈ Zm, θ ∈ (−π, π]m, and ℓ, p satisfying ℓ3 ≥ 16ρ41 and ℓp ≥ 1.
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Proof. Recall the trivial bound |ui(k)| ≥
√
ℓp from (104) for all i and k and the bound from (105) that

|ui(k) + ui′(k
′)| ≥

√
ℓp for all i, i′ and k, k′. The bound (106) implies that

∣∣ui(k)∣∣ ≤ 5
√
ℓp

(
1 +

√
|k|
ℓp

)
≤ 5
√
ℓp

(
1 +

√
|k|
2ρ1r

)

if ℓ3 ≥ 16ρ41 and ℓp ≥ 1. On the other hand, since |ui(k)2−ui′(k
′)2| = |2rρi+i(−2θi+2πk)−2rρi′ − i(−2θi′ +

2πk′)| ≥ 2r|ρi − ρi′ |, we have∣∣∣∣ 1

ui(k)− ui′(k′)

∣∣∣∣ = ∣∣∣∣ ui(k) + ui′(k
′)

ui(k)2 − ui′(k′)2

∣∣∣∣ ≤ |ui(k)|+ |ui′(k′)|
2r|ρi − ρi′ |

(120)

for all k, k′ ∈ N, and i ̸= i′. Inserting these estimates into (119), we obtain the desired inequalities.

The proof shows that we also have the bound given by P
(

k
ℓp ,

k
ℓp

)
. For a later convenience, we replaced

it by a less precise bound P
(
k
r ,

k̂
r

)
.

We also need pointwise limits of R̂n when n = 1.

Lemma 4.13 (Limit of R̂n for n = 1). For Case 1, for every y, ŷ ∈ Rm,

(−1)m−12(ℓp)3/2r2m−2R̂1

(
U([ry]),U([rŷ])

)
→

m∏
i=2

1

(ρi + 2πiyi − ρi−1 − 2πiyi−1)(ρi + 2πiŷi − ρi−1 − 2πiŷi−1)

(121)

uniformly for θ ∈ (−π, π]m. For Case 2, for every k, k̂ ∈ Zn,

(−1)m−12(ℓp)3/2r2m−2R̂1(U(k),U(k̂
′)) →

m∏
i=2

1

(ξi(ki)− ξi−1(ki−1))(ξi(k̂i)− ξi−1(k̂i−1))
(122)

uniformly for θ ∈ (−π, π]m, where ξi(k) = ρi +
1
r (2πik − iθi) as in (92). For Case 3, if

θi = rφi, i = 1, · · · ,m,

then

(−1)m−12(ℓp)3/2r2m−2R̂1(U(0),U(0)) →
m∏
i=2

1

(ρi − iφi − ρi−1 + iφi−1)2
(123)

uniformly for φ is a compact subset of Rm.

Proof. From the definition (78) of ui(k),

ui(k) = −
√
ℓp+ 2rρi − 2iθi + 4πik = −

√
ℓp+ 2rξi(k) = −

√
ℓp

(
1 +

2r

ℓp
ξi(k)

)1/2

using ξ(k) = ρi +
1
r (2πik − iθi). Hence, for every k,

ui(k) = −
√
ℓp

(
1 +O

(
1

ℓ3/4

))
uniformly in θi ∈ (−π, π]. Also for every i ̸= i′ and k, k′,

1

ui(k)− ui′(k′)
=

ui(k) + ui′(k
′)

ui(k)2 − ui′(k′)2
=

−2
√
ℓp
(
1 +O

(
1

ℓ3/4

))
2r(ξi(k)− ξi′(k′))
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uniformly in θi, θi′ ∈ (−π, π]. Inserting them into R̂1(U(k),U(k̂
′)) using the formula (119), we find that for

every k,k′ ∈ Z,

(−1)m−12(ℓp)3/2r2m−2R̂1(U(k),U(k̂
′)) =

[
m∏
i=2

1

(ξi(ki)− ξi−1(ki−1))(ξi(k′i)− ξi−1(k′i−1))

](
1 +O

(
1

ℓ3/4

))
(124)

uniformly for θ ∈ (−π, π]m. The result (124) implies (122) for Case 2. For Case 1, we have r → ∞, and

thus,

ξi([ry]) = ρi +
−iθi + 2πi[ry]

r
→ ρi + 2πiy

for every y ∈ R. Hence, (124) implies (121). If θi = rφi, then

ξi(0) = ρi +
−iθi
r

= ρi − iφi.

Thus, (123) follows from (124) after inserting k = k̂ = 0.

4.7 Proof of Proposition 2.8

We analyze

P̂m,1 = (−1)m−1

∫
(−π,π]m

C•(z)D̂•
1(z)T

•
1 (z)

m∏
i=1

dθi
2π

(125)

where zi = e−
ℓp
2 −rρi+iθi , θi ∈ (−π, π], as given in recall (74). From (42) when n = 1,

T •
1 (z) =

m∏
i=2

(
1− zi−1

zi

)
=

m∏
i=2

(
1− e−rρi−1+iθi−1

e−rρi+iθi

)
. (126)

Since ρ1 > · · · > ρm > 0, we find

|T •
1 (z)| ≤ 2m. (127)

Recall from (81) that

D̂•
1(z) =

∑
k,k̂∈Zm

ŝ•1(k, k̂) (128)

where ŝ•1(k,k
′) = H1(U(k),U(k̂))R̂1(U(k),U(k̂))E1(U(k),U(k̂)). Lemma 4.2, Corollary 4.5, and Lemma

4.12 imply that there are constants c0 ≥ 1, c∗ > 0 and a polynomial P of 2m variables such that

(ℓp)3/2r2m−2e
4
3 ℓ

3/2
∣∣∣ŝ•1(k, k̂)∣∣∣ ≤ |P

(k
r
,
k̂

r

)
|

m∏
i=1

e−c∗

√
|ki|
r −c∗

√
|k̂i|
r (129)

for all k, k̂ ∈ Zm, θ ∈ (−π, π]m, and ℓ, p > 0 satisfying ℓ ≥ c0 and ℓp ≥ 2.

4.7.1 Case 2

For Case 2, r = ℓ1/4p is a constant. Thus, the right-hand side of (129) gives a uniform upper bound,

independent of ℓ and p, that is summable. Therefore, by the dominated convergence theorem, Lemma 4.2
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and equations (91) and (122) imply that

(−1)m−1 4

r2
(ℓp)3/2e

4
3 ℓ

3/2

D̂•
1(z) →

2

r2m

∑
k,k̂∈Zm

m∏
i=2

1

(ξi(ki)− ξi−1(ki−1))(ξi(k̂i)− ξi−1(k̂i−1))

×
m∏
i=1

e∆tiξi(ki))
2−(∆hi−∆xi)ξi(ki)

m∏
i=1

e∆tiξi(k̂i)
2−(∆hi+∆xi)ξi(k̂i)

uniformly for θ ∈ (−π, π]m. Furthermore, the left-hand side is uniformly bounded in ℓ, p, θ. The limit

factorizes to the product of two series, and we find from Definition 2.7 that it is equal to

Sr(t,h− x;w)Sr(t,h+ x;w) where wi = e−rρi+iθi . (130)

Consider the limit of (125). Lemma 4.1 shows that C•(z) → 1 uniformly in θ. Thus, the above limit for

D̂•
1(z) implies that

4

r2
(ℓp)3/2e

4
3 ℓ

3/2

P̂m,1 →
∫
(−π,π]m

Sr(t,h− x;w)Sr(t,h+ x;w)

m∏
i=2

(
1− e−(rρi−1−iθi−1)

e−(rρi−iθi)

) m∏
i=1

dθi
2π

where wi = e−rρi+iθi . Changing the variables θi to wi, this proves Proposition 2.8 for Case 2.

4.7.2 Case 1

For Case 1, we write the series (128) as an integral of a piecewise constant function,

D̂•
1(z) =

∫
Rm

∫
Rm

ŝ•([y], [ŷ])dydŷ = r2m
∫
Rm

∫
Rm

ŝ•([ry], [rŷ])dydŷ. (131)

Consider the bound (129) and insert [ryi] for ki and [ry′i] for k′i. Since r → ∞ for Case 1, we may assume

that r ≥ 1. Then
|y|
2

≤ |[ry]|
r

≤ 2|y| for |y| ≥ 2.

Thus, the estimate (129) implies an r-independent upper bound,

(ℓp)3/2r2m−2e
4
3 ℓ

3/2

|ŝ•([ry], [rŷ])| ≤ |P̃ (y,y′)|
m∏
i=1

e−c∗

√
|yi|
2 −c∗

√
|y′

i
|

2

where P̃ (y,y′) is a polynomial of y,y′ ∈ Rm that does not depend on r and θ. Therefore, the dominated

convergence theorem, Lemma 4.2, and equations (121) and (90) imply

(−1)m−1 4

r2
(ℓp)3/2e

4
3 ℓ

3/2

D̂•
1(z)

→
∫
Rm

∫
Rm

m∏
i=2

1

(ρi + 2πiyi − ρi−1 − 2πiyi−1)(ρi + 2πiy′i − ρi−1 − 2πiy′i−1)

×
m∏
i=1

e∆ti(ρi+2πiyi)
2−(∆hi−∆xi)(ρi+2πiyi)

m∏
i=1

e∆ti(ρi+2πiy′
i)

2−(∆hi+∆xi)(ρi+2πiy′
i)dydy′.

Note that the y-integrals and the y′-integrals factorize. Changing the variables ρi+2πiyi = ξi, the y-integral

is equal to (−1)m−1S∞(t,h−x)/
√
2 of Definition 2.7. Similarly, the y′-integral is equal to (−1)m−1S∞(t,h+

x)/
√
2. Note that the order of the contours comes from condition ρ1 > · · · > ρm. Thus,

(−1)m−1 4

r2
(ℓp)3/2e

4
3 ℓ

3/2

D̂•(θ) → S∞(t,h− x)S∞(t,h+ x) (132)
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uniformly for θ ∈ (−π, π]m, and the limit does not depend on θ.

From Lemma 4.1, C•(z) → 1 uniformly in θ. On the other hand, since r → ∞ for Case 1,

T •
1 (z) =

m∏
i=2

(
1− zi−1

zi

)
=

m∏
i=2

(
1− e−rρi−1+iθi−1

e−rρi+iθi

)
→ 1

uniformly in θ as well. Thus,

4

r2
(ℓp)3/2e

4
3 ℓ

3/2

P̂m,1 → S∞(t,h− x)S∞(t,h+ x).

This proves Proposition 2.8 for Case 1.

4.7.3 Case 3

For Case 3, r → 0. We change the variables θi = rφi so that (125) becomes

P̂m,1 = (−1)m−1 rm

(2π)m

∫
Rm

C•(z)D̂•
1(z)T

•
1 (z)

m∏
i=1

1(−π
r ,

π
r ]
(φi)dφi, zi = e−

ℓp
2 −rρi+riφi . (133)

Write
2

r
(ℓp)3/2e

4
3 ℓ

3/2

P̂m,1 =
∑

k,k̂∈Zm

∫
Rm

Qr(φ;k, k̂)

m∏
i=1

dφi

2π
(134)

where

Qr(φ;k, k̂) = 2rm−1(−1)m−1(ℓp)3/2e
4
3 ℓ

3/2

C•(z)ŝ•1(k, k̂)T
•
1 (z)

m∏
i=1

1(−π
r ,

π
r ]
(φi). (135)

By Lemma 4.1, C•(z) → 1 uniformly as ℓ → ∞ and ℓp ≫ log ℓ. Thus, we may assume that |C•(z)| ≤ 2.

For the term T •
1 (z), the estimate (127) is not enough for Case 3. We need a better estimate. For every

φ ∈ Rm,

T •
1 (z)

rm−1
=

1

rm−1

m∏
i=2

(
1− e−rρi−1+irφi−1

e−rρi+irφi

)
→ (−1)m−1

m∏
i=2

(ρi − iφi − ρi−1 + iφi−1). (136)

Since |1− ew| ≤ |w| for complex numbers w satisfying Re(w) ≤ 0, we also see that

|T •
1 (z)|
rm−1

≤
m∏
i=2

|ρi−1 − ρi − i(φi−1 − φi)| for all φ ∈ Rm. (137)

Thus,

|T •
1 (z)|
rm−1

m∏
i=1

1(−π
r ,

π
r ]
(φi) ≤

(
ρ1 − ρm +

2π

r

)m−1
(138)

since ρ1 > · · · > ρm. Using the estimate (129) for ŝ•1(k, k̂), we find that

|Qr(φ;k, k̂)| ≤ 4
(
ρ1 − ρm +

2π

r

)m−1|P
(k
r
,
k̂

r

)
|

m∏
i=1

e−c∗

√
|ki|
r −c∗

√
|k̂i|
r

m∏
i=1

1(−π
r ,

π
r ]
(φi) (139)

for all φ ∈ Rm.
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For the sum over (k, k̂) ̸= (0,0) in (134), we find, after integrating over φis, that∑
(k,k̂)∈Z2m\{(0,0)}

∫
Rm

|Qr(φ;k, k̂)|
m∏
i=1

dφi

2π

≤ 4
(
ρ1 − ρm +

2π

r

)m−1
(
2π

r

)m ∑
k,k̂∈Zm\{(0,0)}

|P
(k
r
,
k̂

r

)
|

m∏
i=1

e−c∗

√
|ki|
r −c∗

√
|k̂i|
r .

Recall that r → 0 for Case 3. Lemma 4.9 (a) implies that for any non-negative integer ℓ, there is a constant

C ′
ℓ > 0 such that ∑

k∈Z\{0}

( |k|
r

)ℓ
e−c∗

√
|k|
r ≤ 2r

∫ ∞

1
r

yℓe−c∗
√

y
2 dy ≤ C ′

ℓ

rℓ−1/2
e
− c∗√

2r

and ∑
k∈Z

( |k|
r

)ℓ
e−c∗

√
|k|
r ≤ 1 +

C ′
ℓ

rℓ−1/2
e
− c∗√

2r ≤ 2

for all small enough r > 0. Therefore, there are a positive constant C and a non-negative integer n so that∑
(k,k̂)∈Z2m\{(0,0)}

∫
Rm

|Qr(φ;k, k̂)|
m∏
i=1

dφi

2π
≤ C

rn
e
− c∗√

2r .

Thus, the series tends to 0 as r → 0.

We now consider the term for k = k̂ = 0 in (134),
∫
Rm Qr(φ;0,0)

∏m
i=1

dφi

2π . In the derivation of (129),

we used (99). We now use the bound (98) instead to find

r2m−2(ℓp)3/2e
4
3 ℓ

3/2
∣∣∣ŝ•1(k, k̂)∣∣∣ ≤ |P

(k
r
,
k̂

r

)
|

m∏
i=1

e−2c∗
√

1
r |ki−

rφi
2π |−2c∗

√
1
r |k̂i−

rφi
2π |. (140)

Thus, when k = k̂ = 0, there is a constant C > 0 such that

r2m−2(ℓp)3/2e
4
3 ℓ

3/2

|ŝ•1(0,0)| ≤ C

m∏
i=1

e
− 4c∗√

2π

√
|φi|. (141)

Using this estimate in (135), and also using (137) and the fact that |C•(z)| ≤ 2,

|Qr(φ;0,0)| ≤ 4C

m∏
i=2

|ρi−1 − ρi − i(φi−1 − φi)|
m∏
i=1

e
− 4c∗√

2π

√
|φi|.

Since the upper bound is absolutely integrable and does not depend on ℓ, p, we can apply the dominated con-

verge theorem to evaluate the integral ofQr(φ;0,0). Recall ŝ
•
1(0,0) = H1(U(0),U(0))R̂1(U(0),U(0))E1(U(0),U(0))

in (82). Lemma 4.2 implies that H1(U(0),U(0)) → 1. Thus, (93), (123), and (136) imply, also using

C•(z) → 1, that∫
Rm

Qr(φ;0,0)

m∏
i=1

dφi

2π
→ (−1)m−1

(2π)m

∫
Rm

m∏
i=2

1

ρi − iφi − ρi−1 + iφi−1

m∏
i=1

e2∆ti(ρi−iφi)
2−2∆hi(ρi−iφi))

m∏
i=1

dφi.

The limit is S∞(2t, 2h)/
√
2 in Definition 2.7.

Combining all together, we conclude that 2
√
2

r (ℓp)3/2e
4
3 ℓ

3/2

P̂m,1 → S∞(2t, 2h). Thus, we proved Propo-

sition 2.8 for Case 3.
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4.8 Proof of Proposition 2.9

The formula of Pm,1 and P̂m,1 are similar:

Pm,1 =
(−1)m−1

(2πi)m

∮
· · ·
∮

A1(zm)C•(z)D•
1(z)T

•
1 (z)

m∏
i=1

dzi
zi

and

P̂m,1 =
(−1)m−1

(2πi)m

∮
· · ·
∮

C•(z)D̂•
1(z)T

•
1 (z)

m∏
i=1

dzi
zi

.

In the previous section on the analysis of P̂m,1, all upper bounds were obtained from absolute value estimates.

In Pm,1, there is an additional decay factor due to (see (76))

|A1(zm)| ≤ |zm| ≤ e−
ℓp
2

and the fact that ℓp → ∞ for all three Cases. Furthermore, the term D1(z) involves R•
1(U(k),U(k̂)) while

D̂1(z) contains R̂•
1(U(k),U(k̂)). By Lemma 4.12, we find that an estimate of R•

1(U(k),U(k̂)) is the 1
(ℓp)1/2

times the estimate of R̂•
1(U(k),U(k̂)). Thus, in all estimates obtained in the last sections for D̂1(z), we can

multiply 1
(ℓp)1/2

to obtain an estimate for D1(z). Due to these two factors, since |P̂m,1| is uniformly bounded

in all three cases, we find that |Pm,1| is of order e−
ℓp
2

(ℓp)1/2
is all three cases. This proves Proposition 2.9.

4.9 Proof of Proposition 2.10 when p ≪ ℓ5/4

We prove Proposition 2.10 for Case 2 and 3 as well as Case 1 under the extra assumption that p ≪ ℓ5/4 in

this section and prove remaining part of Case 1 in the next section. The assumption p ≪ ℓ5/4 will be used

only when we simplify (145) at the very end of the analysis.

Recall (81) and (82). Lemma 4.2, Corollary 4.6, and Corollary 4.11 imply a bound for s•n(k, k̂) and

ŝ•n(k, k̂). Let c∗ > 0 be the constant from Lemma 4.4 that appears in Corollary 4.6. When applying

Corollary 4.11, we use the constant ϵ = c∗
2 . Thus, we find that there are positive constants c0, c2, c∗, δ and

C0 such that

e
4
3 ℓ

3/2

|s•n(k, k̂)| ≤ 5|n|e4|n|
(
C0(ℓp)

2

r2

)|n|

e−
4δ
3 ℓ3/2−c2|n|ℓ3/2

m∏
i=1

ni∏
j=1

e−
c∗
2

√
1
r |k

(i)
j |− c∗

2

√
1
r |k̂

(i)
j | (142)

for all n ∈ Nm \ {1}, k, k̂ ∈ Zn, θ ∈ (−π, π]m, and L, T > 0 satisfying ℓ ≥ c0 and ℓp ≥ 2. We also have a

similar estimate for ŝ•n(k, k̂) where we need to multiply |n|ℓp due to the difference between (117) and (116).

Consider the series (81) which are sums over k, k̂ ∈ Zn. Since s•n(k, k̂) = ŝ•n(k, k̂) = 0 if two components

of any one of k1, · · · , km, k̂1, · · · , k̂m are equal (due to the Cauchy determinants in Rn(k, k̂)), it is enough to

take sums over indices of distinct components. Thus, noting
∑m

i=1 ni = |n|,

e
4
3 ℓ

3/2

D•
n(z) ≤ 5|n|e4|n|

(
C0(ℓp)

2

r2

)|n|

e−
4δ
3 ℓ3/2−c2|n|ℓ3/2

( ∞∑
k=−∞

e−
c∗
2

√
|k|
r

)2|n|

.

The sum can be estimated using the a = 0 case of (108), and we find that

e
4
3 ℓ

3/2

D•
n(z) ≤ 5|n|

(
C0(ℓp)

4

r2

)|n|

e−
4δ
3 ℓ3/2−c2|n|ℓ3/2 (143)

where the constant C0 is modified from the last equation. We also have a similar estimate for D̂•
n(z) where

we need to multiply |n|ℓp.
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From (45),

|e 4
3 ℓ

3/2

Pm,2| ≤
∑

n∈Nm\{1}

1

(n!)2

∫
(−π,π]m

|A1(zm)C•(z)D•
n(z)T

•
n(z)|

m∏
i=1

dθi
2π

,

|e 4
3 ℓ

3/2

P̂m,2| ≤
∑

n∈Nm\{1}

1

(n!)2

∫
(−π,π]m

|C•(z)D̂•
n(z)T

•
n(z)|

m∏
i=1

dθi
2π

,

where zi = e−
ℓp
2 −rρi+iθi . By (76), |A1(zm)| ≤ |zm| ≤ 1. By Lemma 4.1, |C•(z)| ≤ 2 for all three Cases

eventually. Using the formula of zi, since ρ1 > · · · > ρm, we see that (42) satisfies

|T •
n(z)| =

∣∣∣∣∣
m∏
i=2

(
1− zi−1

zi

)ni
(
1− zi

zi−1

)ni−1−1
∣∣∣∣∣ ≤

m∏
i=2

2ni(1 + er(ρi−1−ρi))ni−1 ≤ 22|n|ec
′r|n| (144)

where c′ = max{ρi−1 − ρi : 2 ≤ i ≤ m} > 0. Note that this estimate contains an exponential function and

is very loose but it is sufficient when we assume that p ≪ ℓ5/4.

Thus, with a new positive constant C0,

|e 4
3 ℓ

3/2

Pm,2| ≤ e−
4δ
3 ℓ3/2

∑
n∈Nm\{1}

|n|
(n!)2

(
C0(ℓp)

4

r2

)|n|

ec
′r|n|e−c2|n|ℓ3/2 . (145)

Since we assume that p ≪ ℓ5/4, we have r = pℓ1/4 ≪ ℓ3/2 and (ℓp)4/r2 = p2ℓ7/2 ≪ ℓ6. Recall that ℓ → ∞
for all three Cases. Thus the sum on the right hand side of (145) is convergent and uniformly bounded for all

three cases. Note that ℓ
p1/2 ≪ ℓ3/2 since ℓp → ∞. This proves first result of Proposition 2.10. An estimate

of P̂m,2 is similar; the summand in (145) is multiplied by |n|ℓp. This change does not affect the proof much

and we obtain the second result of Proposition 2.10.

4.10 Proof of Proposition 2.10 when p ≫ ℓ

Case 1 is when ℓ−1/4 ≪ p and log p ≪ ℓ3/2. We prove Proposition 2.10 for Case 1 when p ≪ ℓ5/4 does not

hold. The proof given here applies to the situation when p and ℓ satisfy p ≫ ℓ and log p ≪ ℓ3/2. Note that

we have ℓ and r both tend to infinity in this case.

The main reason that we added the assumption p ≪ ℓ5/4 in the last section is the factor ec
′r|n| in (145)

which comes from the estimate (144) of |T •
n(z)| ≤ 22|n|ec

′r|n|. In order to improve this estimate, we modify

the integral contours. In (74), the contours were chosen as

zi = e−
ℓp
2 −rρi+iθi , θi ∈ (−π, π],

where ρ1 > · · · > ρm > 0 were fixed numbers. In this section, we choose these numbers to be dependent on

r:

ρi = ρ1 −
i− 1

r
(146)

for 1 ≤ i ≤ m, where ρ1 is a a fixed positive number. With this change, the estimate (144) is changed to

|T •
n(z)| ≤ 22|n|ec

′|n|. (147)

The difference is that the exponent is changed from c′r|n| to c′|n|, which gives a much tighter bound.

However, we need to check how other quantities in the estimate (144) change due to the contour changes.

The estimates in Sections 4.2 and 4.4 are still valid without any change. For the estimates in Section 4.5,

note that d = ρi = ρ1 − i−1
r which depends on r but is close to the constant ρ1. Since Corollary 3.5 holds

uniformly on d, Lemma 4.4 and Corollary 4.6 still hold. However, the estimates in Section 4.6 need some

changes.

Lemma 4.10 is changed to the following estimate.
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Lemma 4.14. For every ϵ > 0, there is a positive constant C0 such that∣∣∣K(ui(k),−ui′(k̂
′); ui(k̂),−ui′(k

′))
∣∣∣∏n

j=1 |ui(k̂j)|
∏n′

j=1 |ui′(k′j)|

n∏
j=1

e−ϵ
√

1
r |kj |−ϵ

√
1
r |k̂j |

n′∏
j=1

e
−ϵ
√

1
r |k

′
j |−ϵ

√
1
r |k̂

′
j | ≤ C

n+n′
2

0 (148)

for all two distinct integers i and i′ from {0, · · · ,m + 1}, n, n′ ∈ N, k, k̂ ∈ Zn, k′, k̂′ ∈ Zn′
, and ℓ, p > 0

satisfying ℓ3 ≥ 4ρ41 and ℓp ≥ 1.

Proof. Recall that it is enough to consider the case when k,k′, k̂, or k̂′ all have distinct components. In the

proof of Lemma 4.10, the estimates (110) and (111) still hold. However, we need to change the estimate 113.

Since the components of k′p are all distinct, we have

n∑
p=1

e−2ϵ
√

1
r |k′

p|

|ui(kq)− ui′(k′p)|2|ui′(k′p)|2
≤

n∑
p=1

1

|ui(kq)− ui′(k′p)|2|ui′(k′p)|2
≤
∑
k′∈Z

1

|ui(kq)− ui′(k′)|2|ui′(k′)|2
(149)

We split the last sum into two parts. The first part contains all k′ satisfying |ui(kq) − ui′(k
′)| ≥ |ui′(k

′)|.
This part is bounded by, recalling the definition of ui′(k

′) in (78),∑
k′

1

|ui′(k′)|4
=
∑
k′

1

(ℓp+ 2rρi′)2 + (4πk′ − 2θi′)2
≤
∑
k′∈Z

1

1 + (4πk′ − 2θi′)2
(150)

which is uniformly bounded by a constant. The second part of the sum contains all k′ satisfying |ui(kq) −
ui′(k

′)| < |ui′(k
′)|. Noting the fact that |ui(kq) + ui′(k

′)| ≤ |ui(kq) − ui′(k
′)| + 2|ui′(k

′)| ≤ 3|ui′(k
′)|, this

part is bounded by ∑
k′

|ui(kq) + ui′(k
′)|2

|(ui(kq))2 − (ui′(k′))2|2|ui′(k′)|2
≤
∑
k′

9

|(ui(kq))2 − (ui′(k′))2|2
(151)

which is uniformly bounded by a constant since i ̸= i′ and

|(ui(kq))
2 − (ui′(k

′))2|2 = 4r2(ρi − ρi′)
2 + (4π(kq − k′) + 2(θi′ − θi))

2

= 4(i− i′)2 + (4π(kq − k′) + 2(θi′ − θi))
2

(152)

by our choices of ρi and ρi′ . Combing the above two parts, we obtain

n∑
p=1

e−2ϵ
√

1
r |k′

p|

|ui(kq)− ui′(k′p)|2|ui′(k′p)|2
≤ C2, (153)

which implies that the bound (114) changes to

n∏
j=1

e−ϵ
√

1
r |kj |

n′∏
j=1

e
−ϵ

√
1
r |k̂

′
j |
[

n∏
q=1

√
C1

ℓp
+ C2

] n′∏
q=1

√
C1

ℓp
+ C2

 . (154)

We thus obtain (148).

Using the above bound instead of Lemma 4.14, the same proof shows that Corollary 4.11 changes to the

following.

Corollary 4.15. For every ϵ > 0, there is a positive constant C0 such that

|Rn(U(k),U(k̂))| ≤ C
|n|
0

m∏
i=1

ni∏
j=1

e2ϵ
√

1
r |k

(i)
j |+2ϵ

√
1
r |k̂

(i)
j | (155)

34



and

|R̂n(U(k),U(k̂))| ≤ |n|(ℓp)1/2C |n|
0

m∏
i=1

ni∏
j=1

e2ϵ
√

1
r |k

(i)
j |+2ϵ

√
1
r |k̂

(i)
j | (156)

for all n ∈ Nm, k, k̂ ∈ Zn, and ℓ, p > 0 satisfying ℓ3 ≥ 16ρ41 and ℓp ≥ 1.

We are ready to prove Proposition 2.10 for Case 1 assuming p ≫ ℓ and log p ≪ ℓ3/2. We follow the same

analysis of subsection 4.9 except that we replace Corollary 4.11 by Corollary 4.15 and the inequality (144)

by (147). Then the inequality (142) is replaced by

e
4
3 ℓ

3/2

|s•n(k, k̂)| ≤ 5|n|e4|n|C |n|
0 e−

4δ
3 ℓ3/2−c2|n|ℓ3/2

m∏
i=1

ni∏
j=1

e−
c∗
2

√
1
r |k

(i)
j |− c∗

2

√
1
r |k̂

(i)
j | (157)

and the inequality (143) is changed to

e
4
3 ℓ

3/2

D•
n(z) ≤ 5|n|

(
C0(ℓp)

2
)|n|

e−
4δ
3 ℓ3/2−c2|n|ℓ3/2 . (158)

For the bounds of |ŝ•n(k, k̂)| and D̂•
n(z), we only need to multiply the bounds of |s•n(k, k̂)| and D•

n(z) by a

factor |n|(ℓp)1/2 due to Corollary 4.15. Finally, using (147), the inequality (145) changes to

|e 4
3 ℓ

3/2

Pm,2| ≤ e−
4δ
3 ℓ3/2

∑
n∈Nm\{1}

|n|
(n!)2

(
C0(ℓp)

2
)|n|

ec
′|n|e−c2|n|ℓ3/2 . (159)

The sum is uniformly bounded provided p ≪ ec2ℓ
3/2, which holds since log p ≪ ℓ3/2. This proves the first

part of Proposition 2.10. The proof of the second part on P̂m,2 is similar.

5 Proof of Proposition 2.11

We first prove Proposition 2.11 (a). We have the following lemma.

Lemma 5.1. Let a ∈ Rm satisfy 0 < a1 < · · · < am−1 < am and let b ∈ Rm. Then, for every r > 0,

(−1)m−1
√
2

(2πi)m

∫
· · ·
∫ m∏

i=2

1− er(ξi−ξi−1)

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξidξi

= P
(√

2B(a1)− b1 ∈ [0, r), · · · ,
√
2B(am−1)− bm−1 ∈ [0, r) |

√
2B(am) = bm

)
ϕam

(
bm√
2

) (160)

where the contours are distinct vertical lines oriented upwards, B is a standard Brownian motion, and

ϕt(x) =
1√
2πt

e−
x2

2t .

Proof. From Gaussian integrals,

1

(2πi)m

∫
· · ·
∫ m∏

i=1

e∆aiξ
2
i−∆yiξidξi =

m∏
i=1

e
− (∆yi)

2

4∆ai

√
2π∆ai

=

m∏
i=1

1√
2
ϕ∆ai

(
∆yi√
2

)

for every y ∈ Rm. The right hand side is the joint density of (B(a1), · · · ,B(am)) at (y1/
√
2, · · · , ym/

√
2).

The equation (160) follows by integrating yi from bi to bi + r for i = 1, · · · ,m− 1 and taking ym = bm.
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If the contours are ordered as Re(ξ1) > · · · > Re(ξm), then the left hand-side of (160) converges, as

r → +∞, to

(−1)m−1
√
2

(2πi)m

∫
· · ·
∫ m∏

i=2

1

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξidξi

Thus, Proposition 2.11 (a) follows. This computation is due to [16, Lemma 3.4].

We now prove Proposition 2.11 (b).

Proof of Proposition 2.11 (b). Denote the left-side of (56) by

A :=
1

(2πi)m

∮
· · ·
∮

Sr(a, c− b;w)Sr(a, c+ b;w)

m∏
i=2

(
1− wi−1

wi

) m∏
i=1

dwi

wi
(161)

where the contours are circles satisfying 0 < |w1| < · · · < |wm| < 1 and (recall (48))

Sr(a,b;w) =
(−1)m−1

√
2

rm

∑
ξ1,··· ,ξm

m∏
i=2

1

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξi .

Since the sum is over the points ξi satisfying e
−rξi = wi, we see that

∏m
i=2

(
1− wi−1

wi

)
=
∏m

i=2

(
1− er(ξi−ξi−1)

)
.

Thus, we can write A as

A =
1

(2πi)m

∮
· · ·
∮

Sr(a, c− b;w)Tr(a, c+ b;w)

m∏
i=1

dwi

wi
(162)

where

Tr(a,b;w) =
(−1)m−1

√
2

rm

∑
ξ1,··· ,ξm

m∏
i=2

1− er(ξi−ξi−1)

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξi . (163)

Let 0 < |w| < 1. Note that if f(ξ) is a function that is analytic in a vertical strip p−2δ < Re(ξ) < p+2δ

for some δ > 0, where p = − log |w|
r , and decays fast as Im(ξ) → ±∞ in the strip, then by the Cauchy residue

theorem, ∑
ξ:e−rξ=w

f(ξ) =
1

2πi

∫ p+δ+i∞

p+δ−i∞

−rwf(ξ)

e−rξ − w
dξ − 1

2πi

∫ p−δ+i∞

p−δ−i∞

−rwf(ξ)

e−rξ − w
dξ.

Thus for such f , we find, using the geometric series and moving the contours, that

∑
ξ:e−rξ=w

f(ξ) =
r

2πi

∞∑
k=−∞

1

wk

∫
p+iR

f(ξ)e−krξdξ

with the contour oriented upwards. Extending the above formula in a natural way, we find that

Sr(a,b;w) =
(−1)m−1

√
2

(2πi)m

∑
n∈Zm

1

wn1
1 · · ·wnm

m

∫
· · ·
∫ m∏

i=2

(−1)m−1

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξie−nirξidξi (164)

and

Tr(a,b;w) =
(−1)m−1

√
2

(2πi)m

∑
n∈Zm

1

wn1
1 · · ·wnm

m

∫
· · ·
∫ m∏

i=2

1− er(ξi−ξi−1)

ξi − ξi−1

m∏
i=1

e∆aiξ
2
i−∆biξie−nirξidξi (165)
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where the contours are vertical lines, oriented upwards, satisfying Re(ξ1) > · · · > Re(ξm). The ordering of

the contours follows from |w1| < · · · < |wm|.
Change the summation index n to k by setting ni = k1 + · · · + ki for i = 1, · · · ,m so that ki = ∆ni

(where n0 := 0.) Using Lemma 5.1 with bi replaced by bi + rki and ci replaced by ci + rki, we find that

Sr(a,b;w) =
∑

k∈Zm

P
(⋂m−1

i=1 {
√
2B′

1(ai)− bi ≥ rki} |
√
2B′

1(am) = bm + rkm
)
ϕam

( bm+rkm√
2

)

w∆k1
1 · · ·w∆km

m

(166)

and

Tr(a,b;w) =
∑

k∈Zm

P
(⋂m−1

i=1 {
√
2B′

2(ai)− bi ∈ [rki, r(ki + 1))} |
√
2B′

2(am) = cm + rkm
)
ϕam

( cm+rkm√
2

)

w∆k1
1 · · ·w∆km

m

(167)

where B′
1 and B′

2 are independent Brownian motions.

Inserting the above formulas into (162) and computing the integrals, we obtain

A =
∑

k∈Zm

P

(
m−1⋂
i=1

{
√
2B′

1(ai)− ci + bi ≥ −rki}
∣∣∣∣√2B′

1(am)− cm + bm = −rkm

)
ϕam(

cm − bm − rkm√
2

)

× P

(
m−1⋂
i=1

{
√
2B′

2(ai)− ci − bi ∈ [rki, r(ki + 1))}
∣∣∣∣√2B′

2(am)− cm − bm = rkm

)
ϕam

(
cm + bm + rkm√

2
).

(168)

Using the independence of B′
1 and B′

2, and noting ϕt((x− y)/
√
2)ϕt((x+ y)/

√
2) = ϕt(x)ϕt(y),

A =ϕam
(cm)

∑
k∈Zm

P

(
m−1⋂
i=1

Ei,ki

∣∣∣∣Gkm

)
ϕam

(bm + rkm) (169)

where

Ei,k = {
√
2B′

1(ai)− ci + bi ≥ −rk} ∩ {
√
2B′

2(ai)− ci − bi ∈ [rk, r(k + 1))}

and

Gkm
= {

√
2B′

1(am)− cm + bm = −rkm} ∩ {
√
2B′

2(am)− cm − bm = rkm}.

For each i, Ei,k, k ∈ Z, are mutually disjoint events. Thus, taking the sums over k1, · · · , km−1,

A =ϕam
(cm)

∑
km∈Z

P

(
m−1⋂
i=1

Ei

∣∣∣∣Gkm

)
ϕam

(bm + rkm), Ei =
⋃
k∈Z

Ei,k. (170)

Lemma 5.2 below implies that

Ei =

{
B′
1(ai) + B′

2(ai)√
2

− ci ≥ distr

({B′
2(ai)− B′

1(ai)√
2

− bi
}
r
, {0}r

)}
Setting B1 = (B′

2 − B′
1)/

√
2 and B2 = (B′

1 + B′
2)/

√
2, which are two independent Brownian motions, and

noting the fact that distr({x− y}r, {0}r) = distr({x}r, {y}r), the above equation becomes

A = ϕam
(cm)

×
∑
km∈Z

P

(
m−1⋂
i=1

{B2(ai)− distr({B1(ai)}r, {bi}r) ≥ ci} | B2(am) = cm,B1(am) = bm + rkm

)
ϕam(bm + rkm).

(171)
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Now, note that for a Brownian motion B(t),

P (B(t) = x+ rn | {B(t)}r = {x}r) =
ϕt(x+ rn)∑
k∈Z ϕt(x+ rk)

=
ϕt(x+ rn)

ϕ
(r)
t ({x}r)

(172)

where ϕ
(r)
t ({x}r) is defined in (14). Thus,

A = ϕam(cm)P

(
m−1⋂
i=1

{B2(ai)− distr({B1(ai)}r, {bi}r) ≥ ci} | B2(am) = cm, {B1(am)}r = {bm}r

)
ϕ
(r)
t ({bm}r).

(173)

This completes the proof of Proposition 2.11 (b).

Lemma 5.2. Recall that {x}r denotes the equivalence class of the real number x in the quotient space

Ir = R/rZ. Recall the distance distr({x}r, {y}r) = mink∈Z |x− y − rk| between equivalence classes is defined

in (12). For every two real-valued random variables X and Y ,

∞⋃
k=−∞

{X − Y ≥ −rk, X + Y ∈ [rk, r(k + 1))} = {X ≥ distr({Y }r, {0}r)} . (174)

Proof. Since both sides of the equation (174) are unchanged if we replace Y with Y ± r, we may assume,

without loss of generality, that −r/2 ≤ Y < r/2. Under this assumption, distr({Y }r, {0}r) = |Y |.
Suppose that there exists a k ∈ Z such that X − Y ≥ −rk and X + Y ∈ [rk, r(k + 1)). If k = 0, then

X ≥ Y and X ≥ −Y . Thus X ≥ |Y | = distr({Y }r, {0}r). If |k| ≥ 1, we have X ≥ max{−rk + Y, rk − Y } ≥
r/2 ≥ |Y | = distr({Y }r, {0}r). Therefore, we find that the left hand side of (174) is a sub-event of the right

hand side.

Now we suppose that X ≥ distr({Y }r, {0}r) = |Y |. There is an integer k such that X+Y ∈ [rk, r(k+1)).

Note that k ≥ 0 since X + Y ≥ 0. Therefore X − Y ≥ 0 ≥ −rk. This implies the right hand side of (174) is

a sub-event of the left hand side. Hence, the proof is complete.

A Extension and continuity of the distribution functions Fm

The limit result (4) was proved in [2] for most but not all parameters. In this section, we first show that the

convergence holds for all parameters. We then show that the limit functions are a consistent collection of

multivariate cumulative distribution functions. We further show that they are continuous in all variables.

Let h(n, t) be the height function for the TASEP on the discrete ring of size 2a as in Section 1.2. For

T > 0, let

h̃T (γ, τ) :=
h(γT 2/3, 2τT )− τT

−T 1/3
, (γ, τ) ∈ R× R+

where the ring size is set as (2a)3/2 = T .7 Let

Rm
+,≤ = {τ = (τ1, · · · , τm) ∈ (0,∞)m : 0 < τ1 ≤ · · · ≤ τm}.

For τ ∈ Rm
+,≤, define

Ωm
+ (τ) = {β = (β1, · · · , βm) ∈ Rm : βi < βi+1 if τi = τi+1}.

It was shown in [2] that for every γ ∈ Rm and τ ∈ Rm
+,≤, the limit

lim
T→∞

P
( m⋂

i=1

{
h̃T (γi, τi) ≤ βi

})
= Fm(β; γ, τ) converges if β ∈ Ωm

+ (τ), (175)

7To be precise, we set a = [T 2/3]/2 since a is a half-integer.
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as mentioned in (21).

When m = 1, it was already shown in [1] that the one-point distribution F1 is a distribution function

and is continuous. We do not need the explicit form of Fm for the first two results below.

We first show that the limit (175) convergences for every β ∈ Rm. For τ ∈ Rm
+,≤, define the set

Ωm(τ) := Ωm
+ (τ) = {β = (β1, · · · , βm) ∈ Rm : βi ≤ βi+1 if τi = τi+1}.

Lemma A.1. Let γ ∈ Rm and τ ∈ Rm
+,≤. For every β̂ ∈ Ωm(τ), the limit

lim
Ωm(τ)∋β→β̂

Fm(β; γ, τ) (176)

exists. Furthermore, if we denote the limit as Fm(β̂; γ, τ), then

lim
T→∞

P
( m⋂

i=1

{
h̃T (γi, τi) ≤ β̂i

})
= Fm(β̂, γ, τ). (177)

Proof. For ϵ > 0, let

β′
i = β̂i − (2− i

m+ 1
)ϵ and β′′

i = β̂i + (1 +
i

m+ 1
)ϵ

for i = 1, · · · ,m. Then, β′, β′′ ∈ Ωm
+ (τ). Furthermore, (β′

1, · · · , β′
k, β

′′
k+1, · · · , βm) ∈ Ωm

+ (τ) for every k.

Let β ∈ Ωm
+ (τ) be an arbitrary number satisfying

∑m
i=1 |βi − β̂i| < ϵ. Note that β′

i ≤ βi ≤ β′′
i . Thus,

Fm(β′; γ, τ) ≤ Fm(β; γ, τ) ≤ Fm(β′′; γ, τ)

where we used the fact that being a limit of a distribution function, Fm(β; γ, τ) is a weakly increasing

function of β ∈ Ωm
+ (τ). From the monotonicity property again, as ϵ ↓ 0, Fm(β′; γ, τ) increases weakly and

Fm(β′′; γ, τ) decreases weakly. Therefore, the limit (176) converges if we show that

lim
ϵ↓0

Fm(β′′; γ, τ)− Fm(β′; γ, τ) = 0. (178)

For every j, from (175),

Fm(β′
1, · · · , β′

j−1, β
′′
j , β

′′
j+1, · · · , β′′

m; γ, τ)− Fm(β′
1, · · · , β′

j−1, β
′
j , β

′′
j+1, · · · , β′′

m; γ, τ)

= lim
T→∞

P
({

β′
j < h̃T (γj , τj) ≤ β′′

j

} j−1⋂
i=1

{
h̃T (γj , τj) ≤ β′

i

} m⋂
i=j+1

{
h̃T (γj , τj) ≤ β′′

i

})
≤ lim

T→∞
P
(
β′
j < h̃T (γj , τj) ≤ β′′

j

)
= F1(β

′′
j ; γj , τj)− F1(β

′
j ; γj , τj).

Summing over j, we obtain

Fm(β′′
1 , · · · , β′′

m; γ, τ)− Fm(β′
1, · · · , β′

m; γ, τ) ≤
m∑
j=1

(
F1(β

′′
j ; γj , τj)− F1(β

′
jγj , τj)

)
.

Since the one-point distribution F1 is continuous (see [1]), the right side converges to zero as ϵ → 0. The

left-hand side is also nonnegative due to the monotonicity property of Fm. Thus we obtain (178), which

implies the convergence of (176).

With the same notations as above, from the monotonicity of probabilities which holds for the parameters

without any restrictions,

P
( m⋂

i=1

{
h̃T (γi, τi) ≤ β′

i

})
≤ P

( m⋂
i=1

{
h̃T (γi, τi) ≤ β̂i

})
≤ P

( m⋂
i=1

{
h̃T (γi, τi) ≤ β′′

i

})
As T → ∞, the lower bound tends to Fm(β′; γ, τ) and the upper bound tends to Fm(β′′; γ, τ). If we let

ϵ ↓ 0, then both of them converge to Fm(β̂; γ, τ). This shows (177).
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Corollary A.2. For every γ ∈ Rm, τ ∈ Rm
+ , and β ∈ Rm, the limit

Fm(β; γ, τ) := lim
T→∞

P
( m⋂

i=1

{
h̃T (γi, τi) ≤ βi

})
(179)

converges. The function Fm(β; γ, τ) is invariant under the permutations of the triples (βi, γi, τi), i =

1, · · · ,m.

Proof. The probability P(∩m
i=1

{
h̃T (γi, τi) ≤ βi}) is defined for every (γ, τ, β) ∈ Rm × Rm

+ × Rm, and is

invariant under the permutations of the triples (βi, γi, τi). For a permutation σ ∈ Sm, let γσ, τσ, βσ be

the parameters obtained from γ, τ, β applying the permutation σ to the index. Let σ be a permutation

so that τσ ∈ Rm
+,≤ and βσ ∈ Ωm

0 (τσ). There is at least one such permutation. By the last lemma,

P(∩m
i=1

{
h̃T (γi, τi) ≤ βi}) = P(∩m

i=1

{
h̃T (γ

σ
i , τ

σ
i ) ≤ βσ

i }) converges. If there are more than one permutation

with the same property, then it is easy to check that they results in the same limit. The invariance under

permutations follow easily.

Therefore, the convergence (4) holds for all parameters, and we use the same notation Fm(β; γ, τ) for

the limit. We now show that Fm(β; γ, τ) are a collection of consistent multivariate cumulative distribution

functions. For the restricted parameters, this fact was proved in [2, Section 7]. Here, we prove it for all

parameters.

Proposition A.3. (a) For every m and (γ, τ) ∈ Rm × Rm
+ , β 7→ Fm(β; γ, τ) is a multivariate cumulative

distribution function.

(b) Let (γ, τ, β) ∈ Rm ×Rm
+ ×Rm. For each j = 1, · · · ,m, let γ(j), τ (j), β(j) be the points in Rm−1 obtained

from γ, τ, β by removing γj , τj , βj, respectively. Then,

lim
βj→∞

Fm(β; γ, τ) = Fm−1(β
(j); γ(j), τ (j)).

Proof. (a) The equation (179) implies the monotone non-decreasing property. It also implies that Fm(β; γ, τ) ≤
F1(βj ; γj , τj) and 1−Fm(β; γ, τ) ≤

∑m
j=1(1−F1(βj ; γj , τj)). We thus find the correct limit properties as β

becomes small or large.

(b) From (179) again,

0 ≤ Fm−1(β
(j); γ(j), τ (j))− Fm(β; γ, τ) = lim

T→∞
P
({

h̃T (γj , τj) > βj

} ⋂
1≤i≤m
i̸=j

{
h̃T (γj , τj) ≤ βi

})

≤ lim
T→∞

P
(
h̃T (γj , τj) > βj

)
= 1− F1(βj ; γj , τj).

The upper bound tends to 0 as βj → +∞ since F1 is a distribution function [1].

The final result of this Section is the continuity of Fm(β; γ, τ). When β ∈ Ωm
+ (τ), the limit Fm(β; γ, τ)

for (175) is given by the formula

Fm(β; γ, τ) =
1

(2πi)m

∮
· · ·
∮

C(z)D(z)

m∏
i=1

dzi
zi

(180)

where the integrand is same as that of the formula (22) (with p = 1) but the radii of the contour circles

satisfy the reverse inequalities 0 < |zm| < · · · < |z1| < 1. From the formula of C(z) and D(z) in Section 2.2

(with p = 1) and Lemma A.1, Fm(β; γ, τ) is jointly continuous for γ ∈ Rm, τ ∈ Rm
+,≤, and β ∈ Ωm(τ). Due

to the invariance under permutations of the triples of the parameters, it is continuous on the set

Um
+ := Rm × Rm

+ × Rm \ {(γ, τ, β) : βi = βj and τi = τj for some 1 ≤ i < j ≤ m}.

The next result shows that it is continuous in all of Rm × Rm
+ × Rm.
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Proposition A.4. The function Fm(β; γ, τ) is jointly continuous in (γ, τ, β) ∈ Rm × Rm
+ × Rm.

Proof. Let (γ, τ, β) be a point in Rm × Rm
+ × Rm. For (γ′, τ ′, β′) ∈ Rm × Rm

+ × Rm and 1 ≤ j ≤ m, let

γ′
(j) = (· · · , γ′

j−1, τ
′
j , γj+1, · · · ), τ ′(j) = (· · · , τ ′j−1, τ

′
j , τj+1, · · · ), β′

(j) = (· · · , β′
j−1, β

′
j , βj+1, · · · ).

Fom (179), for every j,

|Fm(β′
(j); γ

′
(j), τ

′
(j))− Fm(β′

(j−1); γ
′
(j−1), τ

′
(j−1))|

≤ lim
T→∞

P
(
h̃T (γ

′
j , τ

′
j) ≤ β′

j , h̃T (γj , τj) > βj

)
+ P

(
h̃T (γj , τj) ≤ βj , h̃T (γ

′
j , τ

′
j) > β′

j

)
= lim

T→∞
P
(
h̃T (γ

′
j , τ

′
j) ≤ β′

j

)
+ P

(
h̃T (γj , τj) ≤ βj

)
− 2P

(
h̃T (γ

′
j , τ

′
j) ≤ β′

j , h̃T (γj , τj) ≤ βj

)
.

Thus,

|Fm(β′
(j); γ

′
(j), τ

′
(j))− Fm(β′

(j−1); γ
′
(j−1), τ

′
(j−1))| = F1(β

′
j ; γ

′
j , τ

′
j) + F1(βj ; γj , τj)− 2F2(β

′
j , βj ; γ

′
j , γj , τ

′
j , τj)

≤ F1(β
′
j ; γ

′
j , τ

′
j) + F1(βj ; γj , τj)− 2F2(β

′
j , βj − ϵ; γ′

j , γj , τ
′
j , τj)

for every ϵ > 0. If (γ′
j , τ

′
j , β

′
j) is close enough to (γj , τj , βj), then (γ′

j , γj , τ
′
j , τj , β

′
j , βj − ϵ) ∈ U2

+. Thus, the

continuity of F2 on U2
+ implies that

lim sup
(γ′,τ ′,β′)→(γ,τ,β)

|Fm(β′
(j); γ

′
(j), τ

′
(j))− Fm(β′

(j−1); γ
′
(j−1), τ

′
(j−1))|

≤ 2F1(βj ; γj , τj)− 2F2(βj , βj − ϵ; γj , γj , τj , τj) = 2F1(βj ; γj , τj)− 2F1(βj − ϵ; γj , τj)

where we used the fact that F2(a, b; γ, γ, τ, τ) = F1(a; γ, τ) if a < b, which follows from the definition of (179).

Since the inequality holds for every ϵ > 0 and the one-point distribution function F1 is continuous, we find

that

lim sup
(γ′,τ ′,β′)→(γ,τ,β)

|Fm(β′
(j); γ

′
(j), τ

′
(j))− Fm(β′

(j−1); γ
′
(j−1), τ

′
(j−1))| = 0.

Summing over j, we conclude that

lim sup
(γ′,τ ′,β′)→(γ,τ,β)

|Fm(β′; γ′, τ ′)− Fm(β; γ, τ)| = 0,

proving the desired continuity.

B Formula of Dn(z)

We state the formula of D(z) given in [2, Lemma 2.10] and show that it can be written as the form (25) in

Subsection 2.2. It is enough to check it when p = 1 since the general p case follows from the property (9).

For complex vectors W = (w1, · · · , wn) and W ′ = (w′
1, · · · , w′

n′), we denote

∆(W ) =
∏

1≤i<j≤n

(wj − wi) and ∆(W ;W ′) =

n∏
i=1

n′∏
j=1

(wi − w′
j).

We also use the notation that for a function g of a single variable and a vector W = (w1, · · · , wn),

g(W ) :=

n∏
i=1

g(wi).
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For 0 < |z| < 1, the sets Lz and Rz are the discrete sets in the complex plane defined as

Lz = {w : e−w2/2 = z, Re(w) < 0} and Rz = {w : e−w2/2 = z, Re(w) > 0}.

The series formula of D(z) given in [2, Lemma 2.10] is

D(z) =
∑

n∈{0,1,··· }m

1

(n!)2
Dn(z)

where for n = (n1, · · · , nm) and 0 < |z1| < · · · < |zm| < 1,

Dn(z) =

(
1− zi−1

zi

)ni
(
1− zi

zi−1

)ni−1 ∑
U(i)∈L

ni
zi

V (i)∈R
ni
zi

i=1,··· ,m

m∏
i=1

∆(U (i))2∆(V (i))2

∆(U (i);V (i))2
f̂i(U

(i))f̂i(V
(i))

×
m∏
i=2

∆(U (i);V (i−1))∆(V (i);U (i−1))

∆(U (i);U (i−1))∆(V (i);V (i−1))

e−h(V (i),zi−1)−h(V (i−1),zi)

eh(U(i),zi−1)+h(U(i−1),zi)

(181)

with

h(w, z) =


− 1√

2π

∫ w

−∞
Li1/2(ze

(w2−y2)/2)dy, Re(w) < 0,

− 1√
2π

∫ −w

−∞
Li1/2(ze

(w2−y2)/2)dy, Re(w) > 0,

fi(w) =

{
e−

1
3 (τi−τi−1)w

3+ 1
2 (γi−γi−1)w

2+(βi−βi−1)w, Re(w) < 0,

e
1
3 (τi−τi−1)w

3− 1
2 (γi−γi−1)w

2−(βi−βi−1)w, Re(w) > 0,

and

f̂i(w) =
1

w
fi(w)e

2h(w,zi).

Note that w ∈ Rz if and only if −w ∈ Lz. Thus, setting Û (i) = −V (i), the sum in (181) can be written

as ∑
U(i),Û(i)∈L

ni
zi

i=1,··· ,m

m∏
i=1

∆(U (i))2∆(−Û (i))2

∆(U (i);−Û (i))2
f̂i(U

(i))f̂i(−Û (i))

×
m∏
i=2

∆(U (i);−Û (i−1))∆(−Û (i);U (i−1))

∆(U (i);U (i−1))∆(−Û (i);−Û (i−1))

e−h(−Û(i),zi−1)−h(−Û(i−1),zi)

eh(U(i),zi−1)+h(U(i−1),zi)
.

Since h(−w, z) = h(w, z), after inserting the formula f̂i(w) =
1
wfi(w)e

2h(w,zi) and using the notation Ei,±

of (32) instead of fi, we can express the above sum as

∑
U(i),Û(i)∈L

ni
zi

i=1,··· ,m

m∏
i=1

e2h(Û
(i),zi)+2h(Û(i),zi)

eh(U(i−1),zi)+h(U(i+1),zi)+h(Û(i−1),zi)+h(Û(i+1),zi)

m∏
i=1

ni∏
j=1

Ei,+(u
(i)
j )Ei,−(û

(i)
j )

×
m∏
i=1

ni∏
j=1

−1

u
(i)
j û

(i)
j

m∏
i=1

∆(U (i))2∆(−Û (i))2

∆(U (i);−Û (i))2

m∏
i=2

∆(U (i);−Û (i−1))∆(−Û (i);U (i−1))

∆(U (i);U (i−1))∆(−Û (i);−Û (i−1))
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where we set U (0) = Û (0) = U (m+1) = Û (m+1) = ∅ so that eh(U
(0);z1) = 1, and so on. The product involving

the function h is Hn(U, Û) of (29) and the next product involving Ei,± is En(U, Û) of (32). Finally, again

with the convention U (0) = Û (0) = U (m+1) = Û (m+1) = ∅, we have

m∏
i=1

∆(U (i))2∆(−Û (i))2

∆(U (i);−Û (i))2

m∏
i=2

∆(U (i);−Û (i−1))∆(−Û (i);U (i−1))

∆(U (i);U (i−1))∆(−Û (i);−Û (i−1))

=

m+1∏
i=1

∆(U (i−1))∆(−Û (i−1))∆(U (i);−Û (i−1))∆(−Û (i);U (i−1))∆(U (i))∆(−Û (i))

∆(U (i−1);−Û (i−1))∆(U (i);U (i−1))∆(−Û (i);−Û (i−1))∆(U (i);−Û (i))

= (−1)n1+···+nm

m+1∏
i=1

K(U (i−1),−Û (i); Û (i−1),−U (i))

in terms of the Cauchy determinant (30). This is a factor of Rn(U, Û) of (31), and we thus find that Dn(z)

is equal to the form (25) in Subsection 2.2.
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