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Abstract

The KPZ fixed point is a universal limiting space-time random field for the Kardar-Parisi-Zhang
universality class. While the joint law of the KPZ fixed point at a fixed time has been studied extensively,
the multipoint distributions of the KPZ fixed point in the general space-time plane are much less well
understood. More explicitly, formulas were only available for the narrow wedge initial condition [JR21,
Liu22] and the flat initial condition [Liu22] for the multipoint distributions, and the half-Brownian and
Brownian initial conditions [JR22, Rah25] for the two-point distributions.

In this paper, we obtain the first formula for the space-time joint distributions of the KPZ fixed point
with general initial conditions of compact support. The formula is obtained through taking 1 :2: 3 KPZ
scaling limit of the multipoint distribution formulas for the totally asymmetric simple exclusion process
(TASEP). A key ingredient is a probabilistic representation, inspired by [MQR21], of the kernel encoding
the initial condition for TASEP, which was first defined through an implicit characterization in [Liu22].
Moreover, we also verify that the equal time version of our formula matches the path integral formula in
[MQR21] for the KPZ fixed point when the initial condition is of compact support.

1 Introduction

1.1 Background

The Kardar—Parisi-Zhang (KPZ) universality class [KPZ86] contains a broad family of random growth
models in (14 1)-dimensions, including models from directed polymers [Sep12, COSZ14], interacting particle
systems [Joh00], stochastic partial differential equations [KPZ86, Hail3], etc. In the past four decades, the
KPZ universality class has become a central subject of study in probability theory, statistical mechanics,
and mathematical physics. For a more thorough introduction, we refer to the surveys [Cor12, Qual2, Zyg22]
and the references therein.

A hallmark of this class is the universal 1 : 2 : 3 scaling exponent for height fluctuations, spatial correla-
tions and temporal correlations and a conjectural universal scaling limit for all the models in the universality
class. More precisely, it is conjectured that the random height functions H(x,t) describing the evolutions of
different models will all converge to a universal limiting space-time field H(a, 7), under the following scaling:
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where h* and b are the initial conditions for the height functions before and after the limit with h* — b in a
proper sense. A central question in this area is to understand H(«, 7; b).

The field H(a, 7;4) is known as the KPZ fixed point. It was first constructed in [MQR21], and can be
described as a 1 : 2 : 3 scaling invariant Markov process on the space of upper semicontinuous functions
on R with explicit formulas for its transition probability. Convergence to the KPZ fixed point has only
been shown for a few special models, see [MQR21, NQR20, Vir20, MQR25, Wu23, ACH24a]. An alternative
description is through a Hopf-Lax type variational formula [NQR20], with the driving force given by the
directed landscape L(y, s;z,t). This is another universal limiting object in the KPZ universality class first
constructed in [DOV22]. Convergence to the directed landscape are shown for a few special models in
[DOV22, DV21, Wu23, ACH24b, DZ24].

It is well known (see, e.g., [BDJ99, Joh00, ACQ11]) that for special initial conditions, the one point
marginals of H(«,7) are described by the Tracy-Widom distribution and its relatives. Extensions to joint
laws of multiple spatial points at equal time were obtained in [PS02, BFPS07, BFS08, BFP10], leading
to explicit descriptions of the spatial process H(-,7) for special initial conditions. In the breakthrough
work [MQR21], the authors were able to find explicit Fredholm determinant formulas for the joint laws of
H(ar,75h),...,H(m, T; h), starting from general upper semicontinuous initial conditions. This leads to
a complete description of the Markovian dynamics of the fixed point. We also remark that the results of
[MQR21] were further generalized in [MR23a, BLSZ23, MR23b].

Joint laws along the time direction, or more generally in space-time, are much less known until recently.
For the narrow wedge initial condition, a formula for the multi-time distribution was obtained by [JR21],
which builds on the earlier work of two-time formulas in [Joh17, Joh19]. A different multipoint formula which
works for both the narrow wedge and the flat initial conditions and possibly equal time parameters, was
obtained in [Liu22]. We remark that a direct proof of the equivalence between the two formulas for the narrow
wedge initial conditions is still missing due to the complicatedness of both formulas. Two-time formulas for
half-Brownian or Brownian initial conditions were also obtained recently in [JR22, Rah25]. Besides these
distribution formulas, there are also results on the correlation or tail properties of KPZ models at two times,
see [ANLD17, ANLD18, LD17, Joh20, FS16, FO19, CGH21]. We point out that all these mentioned results
on the multi-time problems are studying the KPZ fixed point on R and with special initial conditions. It
is also worth mentioning the related work [BL19, BL21, Lia22] for the multipoint distributions of TASEP
models in periodic domain.

In this paper, we obtain the first formula for the space-time joint distributions of the KPZ fixed point
with general initial conditions of compact support. We will discuss in more details in the following section.

1.2 Main results

The main goal of this paper is to describe the space-time joint distributions of the two-dimensional random
field H(«, 7; ), with sufficiently general initial conditions b, in the same spirit as in [MQR21]. We start with
introducing the spaces of initial conditions we will consider. The largest possible space of initial conditions
from which the KPZ fixed point will be almost surely finite at all positive time is the following:

UucC = {h : R — [—00, 00) upper semicontinuous, h Z —oo and lim sup Kg) < 0} . (1.2)
z—too X

For technical reasons, We will mostly work with the dense subspace of UC consisting of functions that are
—oo outside a compact set.

Definition 1.1 (The function spaces of initial conditions and topology). Define

UC. := {h € UC : there exists L > 0 such that h(x) = —oo for all |x| > L}. (1.3)



The space is equipped with the topology of local Hausdorff convergence of hypographs. We will call functions
h € UC. compactly supported, where the support of h € UC is defined as

supp(h) = {x € R : h(x) £ —oo}, (1.4)

and A means the closure of the set A.

Our main results are formulas for the joint distributions of the KPZ fixed point starting with initial
condition h € UC,, at arbitrary many distinct space-time points (a1,71), ..., (@m, Tm). To state the result,
we introduce the following total ordering < on the space-time plane R x R:

(a1,71) < (2, T2) <= 71 < Ta, or 71 = T2 and o < ag. (1.5)

Theorem 1.2. Let h € UC,.. Then for any m > 1 and any m space-time points (a1, 71) < -+ < (Qn, Tim) €
R x Ry, we have the following formula for the multipoint distribution of the KPZ fized point H(a, 73 8):

m . _ dz; dzm_1 i .
P (ZOI {H (e, 7e5h) < Bﬁ) —jg jg Dy (21,2 2 1), (16)

2mizy (1 — 21) 2mizm—1(1 — Zm—1)

where fo denotes an integral along a circle around the origin with counterclockwise orientation and sufficiently
small radius. The function Dy(z1,...,2m-1) is defined as a Fredholm determinant in Definition 2.1. An
equivalent definition through a series expansion will be discussed in Section 2.2.

Similar as in the narrow wedge case [JR21, Liu22], our multipoint formula for the KPZ fixed point with
a general initial condition has the form of contour integrals of a Fredholm determinant. The Fredholm
determinant Dy has a block diagonal kernel acting on nested Airy-type contours. The dependency on the
initial condition is only through the top-left corner of the kernel, characterized by a function xy (7, §) defined
on certain Airy contours, see Section 2.1.1 for its definition. For the narrow wedge case, our formula recovers
the one in [Liu22].

The function x(7, §) is defined in terms of Brownian motion hitting expectations, an idea highly inspired
by [MQR21]. Indeed, xp(n, ) should be understood as the Brownian hitting operators in [MQR21] written
in Fourier-like spaces. Nevertheless, we stress that our results do not follow directly from [MQR21]. In the
multi-time situation, direct connections to determinantal point processes and the Eynard-Mehta theorem
are lost and the bi-orthoganalization procedure here arises differently and takes a different form. On the
contrary, our results are, in some sense, more general. Indeed, if we set the time parameters to be the same
(which is allowed in the assumption of the theorem), the right-hand side of (1.6) can be shown to recover
the formulas in [MQR21], after some quite non-trivial manipulations. We refer to Section 6.2 for the details,
see also [LO25] which treats the special narrow wedge case.

1.3 Outline of the proof and some discussions

Theorem 1.2 is proved by taking a 1 : 2 : 3 scaling limit of the corresponding multipoint distribution formulas
of the totally asymmetric simple exclusion process (TASEP). The starting point is an algebraic formula
obtained in [Liu22, Theorem 2.1] for the multipoint (space-time) distribution of TASEP starting from any
right-finite initial condition. The dependency of the TASEP formula on the initial condition is encoded in a
function chy (v, u), which is characterized by an implicit reproducing-type property, see Definition 3.1. An
explicit form of chy (v, u) in terms of symmetric functions was also obtained in [Liu22], which is suitable for
asymptotics for the step and (pseudo) flat initial conditions. Thus it led to the corresponding multipoint
formula in [Liu22] for the KPZ fixed point starting from the narrow wedge and flat initial conditions after
taking limits.



A key ingredient of this paper is an explicit probabilistic representation of the function chy (v, u), through
a hitting expectation with respect to geometric random walks, see Theorem 3.4. The probabilistic repre-
sentation is suitable for asymptotic analysis for more general initial conditions and leads to the Brownian
hitting representation in the limit. For technical reasons, we first take the limit of the TASEP formula under
the assumption that the KPZ fixed point starts with initial conditions consisting of finitely many narrow
wedges, and then extend the formula to compactly supported initial condition at the level of the KPZ fixed
point, using a density argument and the continuity of the law of the KPZ fixed point with respect to initial
conditions.

Finally, we comment on our assumptions on the initial conditions. It would be desirable if one can get
a formula that works for all initial conditions h € UC, in particular, the flat initial condition h = 0. The
reason we choose to restrict to the subspace UC, is not merely a technical issue. There are genuine structural
difficulties in this generality: the characteristic function xy (7, &) of the initial condition (see Definition 2.2)
may not be well-defined pointwisely in general. It might be possible to define x4(n,€) in a proper sense
case by case when b is not compactly supported. Indeed, for the flat initial condition h = 0, one can show
from our formula that xp(7, ) is the dirac delta integral kernel §,—_¢ [Liu22]. However, our current strategy
requires to control the rate of the growth of the kernel, where compactness of the initial condition is needed.
It might be possible that one needs to interpret xp(7,£) in the sense of distribution instead of a function.
It might also be possible to conjugate our formula to real spaces so that the limit when the support goes to
infinity exists, at the level of operators acting on real spaces. We leave it as a future project to extend our
formula to any h € UC, with a proper way to understand xp(7,§).

Notation and conventions

Throughout the paper, we will mostly use English letters x, ¢, h, u, v, w, . . . for the pre-limit (TASEP) formulas
and Greek letters a, 7, 8,€,1,C, ... for the limiting (KPZ fixed point) formulas. A detailed summary of the
notation we use is in the following table.

Notation Pre-limit (TASEP) formulas | Limiting (KPZ fixed point) formulas
time, space, height t,x,h T,a,f3

initial height function h(-) h(-)

the height function H(z,t;h) H(a, 73 h)

integration contours Y1, 2R ', I'r

integration variables U, v, W &, ¢

Organization of the paper

The rest of the paper is organized as follows. In Section 2 we present the formulas for the main part Dy
appearing in Theorem 1.2, both as a Fredholm determinant in Section 2.1, and as a Fredholm series expansion
in Section 2.2. Then in Section 3 we present and prove the corresponding pre-limit formulas for TASEP, in
particular in Section 3.1 we prove that the characteristic function of the initial condition is given by a random
walk hitting expectation. In Section 4 we prove convergence of the TASEP formulas to the KPZ fixed point
formulas, under the assumption that the initial condition of the KPZ fixed point consists of finitely many
narrow wedges. We then extend the KPZ fixed point formula to any compactly supported initial condition
in Section 5. Finally, in Section 6 we show that at equal-time, our formula reduces to a genuine Fredholm
determinant, which is then shown to be equivalent to the path integral formula of [MQR21].
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Figure 1: Illustration of the contours for m = 2: S; is the union of the red contours and Sz is the union of the blue contours.
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2 Multipoint distribution formula for the KPZ fixed point

In this section, we explain in details the function Dy(z1, ..., 2m—1) appearing on the right-hand side of (1.6).
Proofs of the formula will be deferred to Section 4 and Section 5.

2.1 Fredholm determinant representation of Dy(zy,..., zy-1)

The function Dy is defined in the same way as its analog in [Liu22] for the narrow wedge initial condition.

The only difference is the part involving the initial condition h, which only appears in the top-left corner of

the integral kernel. Below, we introduce the Fredholm determinant representation of the function Dy.
Denote two regions of the complex plane

CL:={¢CeC:Re(¢) <0}, and Cg:={CecC:Re(()>0}. (2.1)
Let T9Yy, ..., T9Y, T, I‘iQ"?L, e Fg‘t,L be 2m — 1 “nested” contours in the region Cy. They are all
unbounded contours from coe=2"/3 to coe? /3. Moreover, they are located from the right (corresponding to

the superscript “out”) to the left (“in”). The superscripts “out” and “in” should be understood with respect
to the point —oc. Similarly, let o', ..., T9'%, T, [3'R, -, Tim g be 2m — 1 “nested” contours from left
to right on the half plane Cr. They are from coe™™/5 /5 Their superscripts “out” and “in” could
be understood with respect to the point +0o. Note that the angles for the left contours and right contours
are chosen differently. The choice of the angles guarantees super-exponential decay of the kernel along the
contours even if 7; = 7,41 for some i. See [Liu22, LZ25] for more discussions on the choices of the angles.
See Figure 1 for an illustration of the contours.
We define

to ocoe

T =T9PUTY,  Tor:=TPRUTR,,  £=2,...,m,

and
Iy, if misodd,

81::F17LUF27RU“-U . .
I'yr, if mis even,



and

I'ymr, if misodd,

SQ::F17RUF27LU"'U . X
Iy, if mis even.

We introduce a measure on these contours. Let

—zp—1 d¢
_ 1"0‘”U1"°“t £=2,...
172[_1 27_[_17 Ce R ) , 1M,
d =d = ! d¢ 2.2
w(Q) = dp=(¢) == 1_7%%, CEF UFeR, {=2,...,m, (2.2)
d
277§i’ el LUl R.
Let Q1 and Qs be as follows:,
11—z, if j is odd and j < m, 11—z, if j is even and j < m,
1 1
Q1(j) =< 1— , if j is even, Q2(j) =< 1— , ifjis odd and j > 1, (2.3)
Zj—1 Zj—1
1, if j =m is odd, 1, if j =m is even, or j = 1.

Definition 2.1. We define
])})(27]_7 e 7Zm71) = det (I - KlKh) ;

where the operators
Ky : L?(Sg,du) — L(S1,dpu), Ky : L*(Sy,dp) — L*(S2,dp)

are defined by their kernels

Ki(6, ) o= (5:0) + 8,0 + (—1)) fﬁ%,@ﬂj) (2.4)
and _
o J050) + 850 = (<1)) @), P22,
K s = - 2.5
e { (RN (). i=1, 2

forany ¢ € ;L UL, ) NSy and (' € (T, UT jr) NSy with 1 <4,5 < m. Here the function

fi(¢), Re(¢) <0
fi(():==4 1 (2.6)
50 Re(¢) >0
with

fi(¢) ==

e—%(7'1:—7'1'—1)(3+(0¢71—01—1)42-&-(/31—[?1:71){’ i=2,...,m
e—%7—1C3+o¢1C2-H3147 i=1.

The kernel xy(¢',C) is defined in Section 2.1.1, see Definition 2.2.

2.1.1 The characteristic function yj

The dependency on the initial condition of the entire formula is through the function xy defined on Cg x Cy.
Recall that we always use £ and 1 to denote a variable on the I'-contours on Cy and Cg respectively
throughout the paper. Note that xp is a function on ((I'1,, UT'1 ) NS2) x (T, UL gr)NS1) =T1r x T 1.
So we will use the notation xp(7, £) in the paper. The function xy is defined using a Brownian motion hitting
expectation as follows:



Definition 2.2. Let B(t) be a two-sided Brownian motion with diffusivity constant 2. Let b € UC. and T4
be the hitting time of B to the hypograph of the positive (respectively, negative) part of b, i.e.,

74 :=inf{a > 0:B(a) <h(a)}, 7- :=sup{a <0:B(a) <h(a)}. (2.8)

Then for any £ € Cp, and n € Cr, we define
Xo(1,€) = /R dse ™" Ep(o)=s [exp (=74&" = B(11)€) 1+, <oo]
+ / dse ¢ Eg(o)=s [exp (T-n® + B(1-)n) 1+ > o]
R

- /]Rds EB(O):S [exp (_T+§2 - B(TJr)g) 1T+<OO] : IEB(O):s [exp ("'7772 + B(T*)n) 17L>7oo] .
(2.9)
We remark that when h(a) = —oolazo is the narrow wedge initial condition, the above characteristic

function can be evaluated as xg(n,€) = which matches the corresponding function in [Liu22] for the
narrow wedge initial condition.

_1
n—¢§’

Proposition 2.3. For h € UC,., the function xn(n,§) is well-defined and analytic for ¢ € Cy, and n € Cg.
Moreover, for any L > 0 and 8 € R such that supp(h) C [—L, L] and max,er h(a) < 3, we have

Re() " Re(-0) T VA
Proof. Assume supp(h) C [—L, L] and max,er h(a) < 5. We will show that the integrals on the right-hand
side of (2.9) are absolutely convergent and uniformly bounded by the right-hand side of (2.10). Therefore
Xy is well defined and analytic on Cg x Cfy,.

We consider the first integral on the right-hand side of (2.9). Note that 1, oo = 1, <1, and Re(—74+&*—
B(7,)¢) is bounded by L[£2| + SRe(—€) when 7, < L. These facts imply

5/213/2
(1,€)] < e(B+DR(-E+2L (e +1nl) ( 2 2 2/L/> .

[Xp (2.10)

/R ds "] - Eg(oyos [|exp (—74€2 — B(r4)€) |17, o]

< oLIE-BRe(©) / dseRem) By o) (74 < L) (2.11)
R

< oLIEI-BRe(©) / ds e Py (o < L),
R

where we used the following fact that 7 > o with o being the following new stopping time
oy =inf{a >0:B(a) < g}.

Note that the distribution of o} can be computed using the reflection principle, see, e.g., [Durl9, (7.4.4)].
When s > 5+ 1, we can estimate

Pg(o)=s(oy < L) = 2Pg(g)—s (B(L) < j)

1 /5 e*(ylf)z dy — 1 e*(BZLS)z /0 ef(ﬁ;)zfé 1s
vl J_ valL —o
1 _s-s? /0 (B-9)= WL -2 (2.12)
< e iL e 2L dz= —¢ iL
\/7TL —o0 \/E(Sfﬂ)
2L _ (592
< e iL
S



Therefore,

B+1 2 o
/Rds eSRe(ﬂ) ’ IEJ>B(0):s (U-‘r < L) < / ds eSRe f dS eSRe(n)*%

o i A+l (2.13)
o(B+1Re(n) )
< - 4 4LelRem) +PRe()
Re(n)

By inserting this bound to (2.11) and noting that (Re(n))? < |n?|, we obtain

1
/ds Sad -Ep(0)=s [| exp (—7-+£2 _ B(T+)£) |1T+<Oo] < e(BFDRe(n—E)+L(IE1*+[n]?) | <4L + R()> . (2.14)
R en

The second integral on the right-hand side of (2.9) can be handled similarly. We get

1
/ds o™ En(o)=s [|exp (T-0% + B(1_)n) [1_5 o] < e TIR(= LU . <4L n ) .
R Re(—¢)
(2.15)
For the last integral, we need to slightly modify the estimate. We need a different estimate of the integral
when s < 8+ 1. We still have 7, < L when 74 < oo, and 7— > —L when 7 > —o0. Also note that

B(74) < maxyepp,r) B(t) and B(7_) < maxc|_r, 0 B(t). Thus we have
B+1 ) )
/ ds IEB(O):s [| exp (_TJré_ - B(T+)§) |17'+<oo] : IE:B(O):s [' exp (7-777 + B(T*)n) |17L>foo]
N R B+1
< L€ HTD / dsEg(o)es [eReea maxie (.. B(t)] En()s [eRem) maxce(—1.0) B(t)}

B+1
— LU 1+n?D) / ds ™R8 L Fg o [eRc<—5>maxte[o,L] B(t)] - Ep(0)-0 [eRcm) maxe(-z,0] B(t)}

B+1)Re %)
LU e(R () ("6)5 ( / JEELES P dm) . <1/ o $2+Re(n)z dx>
e(n — VL vrL Jo

(B+1)Re(n—§)

(2.16)

SLUER ) & T L(Re(—€))*+L(Re(n))?
- Re(n —¢)
1 1
< Q2LUE I+ D+(B+DRe(n—) . ( I ) ,
Re(—¢)  Re(n)

where we used the fact that max;c(o,z) B(t) and max,e[_p o) B(t) have the same distribution as [B(L)| when
B(0) =0. When s > 3+ 1, we use the following bound which is similar to (2.11) and (2.13),

/B ) dsEp(o)=s [| exp (=746 = B(13)€) |1+, <o - EB(0)=s [| xp (77" + B(7-)n) 1+ > o]
+

oo
< eﬁRe(n—ﬁ)JrL(lelJrlvlz)/ dsPp(o)=s(0+ < L)Pp(o)=s(0~ = —L)

TLl ) (2.17)
< PRe(=O+L(E [+ . REFPRRCES
T Jpt1
5/273/2
< RO+ LU ) | 2L
— ﬁ )
where o_ := sup{a < 0: B(a) < S8} is a stopping time which has the same law as —o . By combining all
the bounds (2.14), (2.15), (2.16) and (2.17), we prove the desired bound (2.10).
O



For convenience, we were using the origin 0 as the starting point of the Brownian motions in the hitting
expectation formula. The next proposition shows that this is not necessary, and one can start with any point
on the real line R and get the same characteristic function xy.

Proposition 2.4. One can change the starting point of the Brownian motions in the definition of the
function xy defined in (2.9). More precisely, for any w € R one has

X (1, €) = " /Rds et Ep(u)=s [exp (7462 — B(T1)€) 11, <o)
o / dse™™*  Ep(w)—s [exp (7-0" + B(T-)n) Lr_> o] (2.18)
R

- /RdSEB(w):s [exp (70 + B(7_)n — 716 = B(74)€) Ljrs j<oo] »
where the hitting times T+ are now defined as
T =inf{a > w:B(a) <h(a)}, 7 =sup{a<w:B(a)<h(a)}. (2.19)
In particular if supp(h) C [—L, L] for some L > 0, then

xm(n,s)::e*L"QJLdse“7'EB<_LJ:s[exp<4~r+§2—48(74)5)1T+§L]. (2.20)

The proof of Proposition 2.4 will be given in Section 5.2. We point out that it is purely a result about
the Brownian motion, but we are not able to find it in the literature.

2.2 An equivalent series expansion formula

Due to the block diagonal structure of the kernel K; and Ky, the Fredholm determinant Dg(z1, ..., 2m—1)
admits a series expansion, which we will be working with more frequently in the subsequent sections. To intro-
duce the formula, we first introduce a few notation. Given W = (wy,...,w,) € C" and W' = (wi,...,w),) €
C™, we denote

WUuw' = (wy,...,wy,wh,...,w,)eC™" (2.21)

Assume in addition that n = m and w; # w; for all 1 <i,5 < n. We denote

1 n(n—1 o P —w; - ;
C(W; W/) -— det |:w_,:| — (_1)¥ H1§z<]§n(w3 w )(wj w )7 (2.22)

Wi l1<i j<n [li<ijn(wi = wj)

which is the usual Cauchy determinant. The Cauchy determinant C(W LIW'; Wuw’ ) is defined in the same
way with the combined variables W LI W' and another set of variables W LU W’ with the same dimension as
WwWuw’'.

Proposition 2.5 (Series expansion for Dy(z1, ..., 2m—1)). Alternatively, we have
1 (n)
Dh(zlv-“vzm—l) = (nll -nm')2Dh (Zl,...,Zm_l), (223)
ne>0,
1<i<m
where n = (n1,...,nm) € (Z>0)™, and
Dg;n)(zlv"' Zm—l) D( Zh" y Am—1; 041,7'1,,81) amaTmaﬁm))
m— Z mo nyg f
H ) I%HH/mmﬂ/wz>HH
=1 l=1ip,=1 =114, 1fg (224)

m—1

- det [Xh (7]1(1),5](1))] . C (5(5) L Tl(lJrl); n(l) L £(£+1)) . C(g(M); n(m))’
<i,g< 7

=



with €0 = (7,...,&)) and n® = " ,... 1)), for 1 <€ <m. Here

fo(w) = e_%(TZ_TE—1)wg"l‘(ai_ai—l)w2+(62_ﬂ£—l)w7

for 1 < € <m, with the convention that 1o = ag = By := 0.

We remark that (2.24) looks slightly different from the version in [Liu22, (2.27)] because we use the func-
tion C instead of the Vandermonde type products A. The formula (2.24) also appears in [LZ25, Proposition
3.1] when xp(n,&) = 1/(n — &) for the narrow wedge initial condition. The equivalence of Proposition 2.5
and Theorem 1.2 follows from [Liu22, Proposition 2.9], see also [BL19, Lemma 4.8] and [BL21, Lemma 5.6].

3 Multipoint distribution formulas for TASEP

Our formulas for the KPZ fixed point are obtained by taking 1 : 2 : 3 scaling limit of the analogous formulas
for the totally asymmetric simple exclusion process, which we discuss in this section. The totally asymmetric
simple exclusion process (TASEP) on Z is a continuous-time Markov chain X; = (x;(t));>1, consisting of
particles on Z performing independent Poisson random walks subject to the exclusion rule. Each particle
tries to jump to its right neighbor after an independent exponential waiting time with rate 1 but the jump
is forbidden if the target site is occupied. The exponential clock is reset after each jump attempt. We will
assume there is a right-most particle with index 1 and label the particles from right to left, so the i-th
particle at time ¢ has location x;(t) and

< xg(t) < xo(t) < x1(2).

The initial configuration is denoted by ¥ = (y;);>1 := (x:(0));>1. Our key observation, following the work
[Liu22], is that the initial condition Y can be encoded in a two-variable function chy (v,u), defined as an
expectation involving random walk hitting problems. We begin by introducing this key object.

3.1 Characteristic function of the initial condition

In this subsection, we discuss how to characterize the initial condition in the TASEP formulas, and provide
a probabilistic representation of the characterization.

One feature of the TASEP is that the distribution of any finite set of the rightmost particles, up to
a fixed label N, is independent of the state of particles to their left. Conversely, a TASEP model with
N particles can be embedded into a TASEP model with infinitely many particles, where the N rightmost
particles correspond to the N-particle system, and the states of all other particles are arbitrary. This feature
will be used when we characterize the initial condition of TASEP with finitely many particles.

Consider the following two simply connected regions of C:

1 1
QL:{wEC:w+1|<2}, QR:{wGC:|w|<2}. (3.1)

The following characterization of the initial condition comes from [Liu22], see Proposition 2.13 and the
subsequent discussion in that paper for further details. It claimed that the initial condition is encoded in
any function satisfying two conditions in the multipoint distribution formula of TASEP. We summarize these
two conditions and introduce the concept of characteristic function below.

Definition 3.1. Let Y = (y1 > y2 > -+ > yn) where N is a fized integer. We say chy is a characteristic
function of Y, if it satisfies the following two conditions:

10



1. chy : Qr x (QL\{—1}) — C is analytic.

2. For any 1 <i < N, one has

_ . d . .
7(1}71(1} + 1)¥* . chy (v, u)—v = —u"(u+ 1)Vt (3.2)
0 2mi

Remark 3.2. As pointed out in Proposition 2.13 of [Liu22] and the comments thereafter, for any given
Y, there are infinitely many characteristic functions. However, the law of the TASEP model such as the
multipoint distributions we are interested in here does not depend on the choice of chy . This non-uniqueness
comes from the nature of the TASEP model, as we discussed at the beginning of this subsection.

Remark 3.3. One could formally extend the concept of the characteristic “function” chy (v, u) to an infinite
system with particles labeled on Zy and' Y = (...,ys3,y2,y1) by defining chy (v,u) to satisfy (3.2) for all
i € Z4. We could extend it even further to a TASEP with particle labeled on Z, while the first condition is
absorbed into the second condition by allowing i € Z in (3.2). The issue for these extensions is that chy is
not necessarily well-defined as a function because of the convergence issue.

In [Liu22], the author derived a characteristic function expressed in terms of symmetric functions for
any Y, which is well-suited for asymptotic analysis under the step or flat initial condition. As a result, the
author obtained the multipoint distribution of the KPZ fixed point for both the narrow-wedge and flat initial
conditions. However, the characteristic function presented in [Liu22] is not suitable for asymptotic analysis
with general initial conditions. One main contribution of this paper is the following characteristic function
chy defined by an expectation involving random walk hitting problems, which turns out to be suitable for
asymptotic analysis. The idea is heavily inspired by the seminal work [MQR21]: we compared the two
formulas of [MQR21] and [Liu22] and guessed the identity. We remark that a similar hitting expectation
kernel expression has also been derived in [BLSZ23], which generalized the approach of [MQR21]. Another
interesting connection is that the left-hand side of the equation (3.7) in our proof has a similar structure
with an expression of the G(z1, z2) function in [BLSZ23, Proposition 4.6], although they are still different!.

Theorem 3.4. Let (Gi)r>0 be a geometric random walk with transition probability given by

1

IED(G]@+1 =X ‘ Gk = y) = 2247_$11<y, (33)

and T be the hitting time of G to the strict epigraph of Y, namely
T:=min{m > 0: Gp, > ym+1}- (3.4)

Then the following function chy is a characteristic function of Y
chy (v,u) == Y (2u+2)* - E 2 U (3.5)

Y ’ L =~ Go=z (2’[) + 2)G7+1 v + 1 TN | - .

We remark that for the narrow wedge initial condition y; = —i, 1 < ¢ < N, the characteristic function
defined above is equal to chy (v,u) = >°_5,(2u+2)* - W = 1 which matches the corresponding

characteristic function in [Liu22] for the step initial condition.

Proof. First we check the analyticity of chy (v,u) in Qr x (QL\{—1}). Recall that v € Qr =: {|Jw| < 1/2}
and u € Q, =: {Jw+ 1] < 1/2}. Note that the summand on the right-hand side of (3.5) is 0 when z < yy,

I The left-hand side of (3.7) has two factors 2% and 2~ %+ which the G(21, 22) function in [BLSZ23] does not have. This results
in the different meanings of these two quantities: (3.7) is a binomial coefficient, while G(z1, 22) in [BLSZ23] is a probability.
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since the random walk will stay below the epigraph of Y up to time N. Moreover, 7 = 0 and GG, = z when
z > y1. Therefore, we have

[e'¢) . 2 Y1 B 9 oy T
Chy(U,u): Z (2u—|—2) W—F Z (2u—|—2) ~EG0=Z |:(2U+2)G7+1~(U+1> 17—<N:|

z2y1+1 z=yn+1
w1\ 1 & 2 —v \7
= . 2 2)* - Eg,—, . 1, ,
<U+1> P + yz+l( u + ) Go= (2’U+2)GT+1 v+ 1 <N
Z=YN

(3.6)

where we used the fact that |u + 1| < |v + 1] to simplify the first summation. Note that the right-hand
side of (3.6) is a sum of finitely many terms each of which is analytic in Qg x (2r,\{—1}). This proves the
analyticity of chy (v,u) in this domain.

Next, we verify that the right-hand side of (3.5) satisfies (3.2) for all 1 < ¢ < N. A Taylor expansion of
u~" at —1 gives

) . S i+ —1 o
—uﬂ(u + 1)yi+l — (_1)z+1 E <Z +]’ )(u + l)yi+z+J,
" J
7=0

where the series converges absolutely for u € Qp,. From (3.6) we have seen that the right-hand side of (3.5)
converges absolutely as a Laurent series in u for v € Qp,\{—1}. Hence, it is sufficient to show that

dv _, 27 1 v\’ - z—y;—1
—i vt = F . 1. — (-1 1+112 L i )
}ézm” (D" 057 Baos [(2U+2)GT (v+1> <N} R

By interchanging the contour integration and the expectation (which is justified by (3.6)), the above is

dv (v 1)yitiml=G—7 1 z—y;—1
2 . Ea—. | ¢ — , I P [ DR , .
o= [fg 27 (—v)i=7 2G- TN vt (3:7)

equivalent to

which is, by using the assumption that ¢ < N and the fact that the v-integral vanishes when ¢ > 7,

Gr—y — 1)\ 1 z—yi—1
2% . Eg . |- S S (s Y . .
Go= { <i—7—1 )QGT <] >yl+( i—1 ) (3:8)

Below we use induction to prove (3.8) for any 1 <7 < N.

When ¢ = 1, the expectation on the left-hand side of (3.8) is nonzero if and only if 7 = 0, which is
equivalent to z > y; + 1. Moreover, when 7 =0, G, = Go = z. Thus (3.8) holds.

Assuming the identity is true for i — 1, we want to show it holds for 4.

Note that when z > y; 4+ 1, we have 7 = 0 and both sides are equal.

When z < y;, we define G = Gr4+1 and g = yg41 for k=0,1,.... Then we have, by induction,

B Gr — i1 —1 ilA _ 1. _ Z—gi—1—1
i 49 2é‘r T<i—1| — 229i—1+i—1 i_9 3

here 7 := 7 — 1. Thus, we have

2 Ego=z

z—1 A z—1
1 G — 91— 1\ 1 1 Z2—9i—1—1
; 5o=5 " EGo=s _( i _9 )2@1%1‘1] == _Z_ 2212>yi1+i1( e ) (89

By using the Markov property for the left-hand side of (3.9), we have

z—1

G-y — 1)\ 1 1>y 4 Z—yi—1 Lo>y+i(2—yi—1
EG“‘Z[_<1'T1)2G71T<J:_2Z 2 i—2 ) 2 i-1 )

Z=y;+i—1




where we used the identity > _, (Tg:ll) = () in the last step. This finishes the induction and the proof.
O

3.2 Multipoint distribution of TASEP with general initial configurations

As we discussed in the previous subsection, the multipoint distribution of TASEP only depends on a finite
number of rightmost particles. Hence, in this subsection, we consider the TASEP model with finitely many
particles.

The following theorem is essentially [Liu22, Theorem 2.1], where the integrand Dy (z1, . . ., 2m—1) is defined
by a Fredholm determinant formula or a series expansion formula and the initial condition information is
encoded in a characteristic function of Y. It was proved that the choice of characteristic functions does not
affect the value of the Dy function. We will present the formula with a new characteristic function chy as
in (3.5) in Theorem 3.4 that is suitable for asymptotic analysis.

Theorem 3.5. Given Y = (yn,...,Y2,91) € ZV satisfying yn < -+ < y1, where N is a positive integer.
Consider TASEP with initial particle locations Xo = Y. Let (ki,t1),..., (km,tm) be m distinct points in
{1,..., N} x Ry satisfying t1 < tg < --- < t,,. Then for any integers ay,...,am,

~ le dszl
P ty) > - ¢ -t . D ), 1
Y (Q{xm( 0) = az]’) jé 2mizy (1 — 21) jg 2mizm—1(1 — 2m—1) v (21,5 2m-1) (3.10)

where Py denotes the probability given X(0) =Y. The function Dy (z1,...,2m-1) is defined as a Fredholm
determinant in Definition 3.6, or equivalently as a series in Definition 3.7.

3.2.1 Fredholm determinant representation of Dy (z1,...,2zm—_1)

The definition of Dy (z1,...,2m—1) is very similar to its limiting counterpart Dy(z1,...,2m—1) defined in
Section 2.1 and 2.2, either as a Fredholm determinant det(I — K;Ky) or as a Fredholm series expansion. We
will only use the series expansion formula in this paper, but we present both formulas here for completeness
and possible later uses.

3.2.1.1 Spaces of the operators

We will define the operators on two specific spaces of nested contours with complex measures depending on

z=(21,...,2m-1), where zp # 1 for each 1 < ¢ < m — 1. Recall the definition of the two regions €, and
Qg from (3.1).

Suppose Eg;{tL, ceey Eg}‘ﬁ, YL, Zi{"L, ceey Z%!L are 2m — 1 nested simple closed contours, from outside to
inside, in Q, enclosing the point —1. Similarly, ¥0"%, ..., 3%, X1 R, ngR, e, E%)R are 2m — 1 nested

simple closed contours, from outside to inside, in 2y enclosing the point 0. See Figure 2 for an illustration
of the contours. These contours are all counterclockwise oriented.

We define
Yo =301 USPL, Ser=SPRUSMR, £=2,...,m, (3.11)
and
S e B U U U Ymy, ifmisodd,
‘= #1L R . .
! ' ? YmRr, if miseven,
and

YmR, if misodd
Sy ::ELRUZQLU-"U e . . ’
' Ymi, if miseven.
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Figure 2: Illustration of the contours for m = 2: The regions 21, and {2y are the interior of the two dashed circles, from left to
right; the three contours around —1 from outside to inside are Eg“ﬁ, 1L, Eian respectively; the three contours around 0 from

outside to inside are 2‘2’“&, 31,Rs Ein‘R respectively. Sp is the union of the red contours, and Sz is the union of the blue contours.

We introduce a measure on these contours in the same way as in (2.2). Let

—Z-1 dw out out
1_7221%, ’LUEE&L UE&R, £:2,...,m,

1 dw . i
dﬂ(’LU) - d,uz(w) = 1_7% 271‘i7 w e EZ‘L U EIEI,IR7 ! = 2, e, M,
d
7’11).’ w e EI,L U EI,R'
27
3.2.1.2 Operators K£; and Ky
Now we introduce the operators Ky and Ky to define Dy (z1,...,2,—1) in Theorem 3.5. We assume that
z=(z1,...,%m—1) is the same as in Section 3.2.1.1. Let
11—z, if j is odd and j < m, 11—z, if j is even and j < m,
1 1
Q1(j) =<1~ , if j is even, Q2(5) =< 1— , ifjisoddand j>1,
Zj—1 Z5—1
1, if j =m is odd, 1, if j =m is even, or j = 1.

Definition 3.6. We define
Dy(zl, ey Zm—l) = det (I — Kll(:y) y

where the two operators
Ky 2 L*(Sa,dp) — L*(Sy,du), Ky : L*(S1,dp) — L*(Sa, du)

are defined by their kernels

Kalwu) = (5,0) + 6 + (1)) 7 0,5, (3.12)
and ~
: . gy fiw')
Ky (w',w) := (5j(l)j_ 0i(i = (=1)")) w — wQ2(l)’ 122 (3.13)
8;(1) f;(w")chy (w';w), i=1,
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for any w € (E;,UX; r) NSt and w' € (3,1, U, r)NSe with 1 <i,5 <m. Here chy is the characteristic
function given by (3.5). The function
filw), w e Q\{-1},

fiw)=4 1
m, w e Qr \ {0},

with

wki*kz'fl(w + 1)7(04*ai—l)*(ki*ki—l)e(ti*ti—l)w’ i=2,...,m,
fl(w) = (314)

wh (w4 1) Rehw, 1=1,

for allw e (Q\ {—1}) U (Qr \ {0}).

3.2.2 Series expansion formula for Dy (z1,...,2m—1)

We will be working with the following series expansion formulas, which is equivalent to the Fredholm determi-
nant formula in the previous section, by [Liu22, Proposition 2.9]. We use the same notation and conventions
as in Section 2.2 for the Cauchy determinants.

Definition 3.7 (Alternative definition of Dy ). We have an alternative definition of Dy below

1 n
Dy (21, 2me1) == D Wpy(zl, e Zmet)s (3.15)
ne(Zxo)™ '
with n! =nq!---ny! form=(ny,...,n,). Here

Dgfn)(zla e 7Zm71) = Dg;l)(zlv ey Zm—1; (xlatla al)a ey (xmatma am))

m—1 m  ng ) m u
= (1 — Z@)W (1 - MH < dﬂz )/ dﬂz )

g le Zgnl E@ L SeR ZH1 1€H1 fg 'U(e) (3.16)

m—1

- det [chy(vj” 1) ]1<- - H C (Um L VD, o) uU“H)) QU ym),
2,J<n1 -

’ ]

with U®) = (ugz) ugﬁ)) and V) = (v%é) v%_])) and the functions f; defined in (3.14) for 1 < £ <m.

4 Convergence of the TASEP formula

In this section, we will take the proper scaling limit of the TASEP formulas (see Theorem 3.5), to get the
corresponding KPZ fixed point formulas. We start with the setup for the proper rescaling.
4.1 TASEP height function and 1: 2 : 3 rescaling

The TASEP particle configuration can be encoded into the corresponding height function H(z,t), defined
as the unique function R x Ry — R satisfying the following conditions:

1. H(0,0) =0,

2. H(x+1,t) = H(z,t) + 7(x,t) for all © € Z, where
N 1 if there is a particle at site x at time ¢,
n(w,t) =

-1 if there is no particle at site x at time t,
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3. H(-,t) is piecewise linear with constant slopes between consecutive integers.

The dynamics of the height function is as follows. Each local maximum of the height function turns into
a local minimum after an independent exponential time with rate 1. After each flip of max to min, the
height at the flip decreases by 2 while the height at the other integer points remain unchanged. The values
at general z € R are then determined by linear interpolations. Note that here we follow the convention in
[MQR21] where the height function decreases in time, instead of increasing as in some other literature. More
explicitly, for the TASEP Markov chain X; = (x;(¢));>1 we define its height function as

H(z,t)=-2(X; (2 —-1) - X5 '(-1)) —z, forzeZ, (4.2)
where
X, M) = inf{k € Z: x;.(t) < u}.
In particular, the initial height function h corresponding to the initial particle configuration Y is
h(z):= H(z,0) = -2 (Y '(z— 1) =Y !(-1)) —z, forzeZ

We will use Y(h) or h(Y) to represent the initial particle configuration Y corresponding to the initial
height function h and vice versa. Under this identification we can express the joint distribution of particle
configurations using the height functions and vice versa, for example

Py (ﬁ{xm (te) > ae}) =Py (ﬁ{H(az,tz) < —ap— 2k‘g}> . (4.3)
=1

(=1
Now we introduce the proper rescaling for the TASEP height function so that it will converge to the KPZ
fixed point. For € > 0, we define the rescaled TASEP height function H¢(«, 7) for (o, 7) € R xR as follows:

He (o, T) == e? (H(25_1a, 2737) + 5_37) . (4.4)

In particular H¢(a,0) = £2 - H(2e e, 0) =: h*(a). It was shown in [MQR21, Theorem 3.13] that if h* — b in
UC as ¢ — 0, then for any positive integer m one has (H(-, 71;5%), ..., HE(-, Tin; %)) converges in distribution
to (H(-,m150),...,H(-,7m; h)) in the topology of UC™, where H(-,+; ) is the KPZ fixed point starting from
the initial condition h. This in particular implies

m ' L m _% .
P <LD1 {H (o, 03 ) < 5@}) = il_{%Py(he) (ﬂ {x s*%n%flaﬁ%g*%m(% T) > 2¢ ae}> . (4.5)

{=1

=

We will use (4.5) and Theorem 3.5 to prove Theorem 1.2. Our strategy is to first assume that the initial
condition b is a linear combination of finitely many narrow wedges and prove convergence of the TASEP
approximations for such initial conditions. Then we use the density of such initial conditions to extend (1.6)
to all h € UC,.

4.2 Finitely many narrow wedges and approximations
Definition 4.1 (Multiple narrow wedges). Define the space of initial height functions consisting of finitely
many narrow wedges:

M—1
mNW := {h € UC: h(w) := Y Oplu—u, — Olug(w0ckcrr—1} M € Zy 0 € Rowy > -+ > wpyr_1}. (4.6)
k=0

We will also be working with the following subspace of mNW consisting of normalized height functions:

mNWq := {f) e mNW 1wy =6y = 0} (47)
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We start with proving Theorem 1.2 under the additional assumption that the initial condition b for the
KPZ fixed point is in mNWg, namely it takes the form

M-—1
hlw) := Z OrLi=w;, — 00Lugfw,0<k<M—1} (4.8)
k=0

where M € Z1, 0 = wo > w1 > --- > wy—1 and Oy = 0. Note that if h(w) = >, Oxlwzw, — 00Llug(w, k) €
mNW, then E() :=bh(- +wg) — 0y € mNWj. By the invariance property of the KPZ fixed point and also the
structure of yp one can extend the formula to h € mNW from mNWj, see Section 5.3 for explanations.

We approximate ) € mNWq by the following sequence of height functions {h=}.<0:

b (w) := e'/?h*(2e " w), (4.9)

where h® is piecewise linear with slope £1 such that h®(2e~'wy) = e~ /20;, +O(1) foreach 0 < k < M —1. In

terms of TASEP particle configurations, h® corresponds to setting the occupation functions 7(z,0) defined
in (4.1) as:

7, 0) +1, if e Nwp + wpy1) + 5‘%@ <z < 2wy, for some 0 < k< M —1, (4.10)
7(x,0) := B .
-1, if 27wy, <z <e N wp_1 +wr) + E_%% for some 0 < k < M — 1.

Roughly, we are putting densely packed particles between 2¢~!

wi and e~ Hwy +wpyr) + 2 % and no
particles between 2e~twy and e~ (wy + wy—1) + ez M, for 0 < k < M — 1. Here wj; is understood as
—oo and w_7 is understood as +oo.

The following proposition implies Theorem 1.2 under the additional assumption that h € mNW.

Proposition 4.2. Given h € mNW. Let (h%).s0 be the approximating sequence of initial height functions
for TASEP defined as in (4.9) and (4.10). Given z1,...,2m € C with |z;| =r <1 for 1 <i<m—1. To
lighten the notation we will suppress the dependency on € at most places and write

Dys (Zl7 e 7Zm71) = Dy(ha)(zl, ey 2m—1; ke, aE,tE)7
where Dy (z1,...,2m-1) = Dy (21,...,2m—1;k,a,t) is defined in Section 3.2.1. Here we use boldface letters
to denote vectors, for example, k := (ki,...,kn). Assume the parameters satisfy
1 1
kj = 55*%77 —etay — 55*%55 +0(1), a§:=2"tay+0(1), t5:= 2% 27y, for1<l<m. (4.11)

Then we have

m—1 dz m—1 dz
. ‘ 14 ‘ 14
1 D € ... — —_— D DRI — .
1m | I1 i (1 ) Y (Zla y Zm 1) ZI I1 iz (1 Z) b(zla y Zm 1)

Proposition 4.2 is a consequence of the following two lemmas and the dominated convergence theorem.
Lemma 4.3. Let Dgfls) and Dgn) be as in (3.16) and (2.24), where b is given by (4.8) and Y = Y (h®) is
described in (4.9). Then for each n € (Z>o)™ and (z1,. .., 2m—1) € (D(0,1))™~, we have
lim Dg/ng)(zl, vy Zm—1;k%,a%,t%) = D(hn)(zl, ey Zm—15 00, 3, T). (4.12)

e—0
Lemma 4.4. There exists constant C > 0 such that

m—1 m
1 2np41
< H |Z€|( + |Zf+1|) . H n?z . Cn1+~-+nm7 (4.13)
/=1

D (21, ... 2m1; K5, 0%, t°
YE( 15 s #m—1, y A ) ne+1|1_zg|ne+1*n£ P

for anyn = (n1,...,nm) € (Z>0)™ and (21,...,2m—1) € (D(0,1))™~1.
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The remaining of this section is organized as follows: we will first prove a uniform bound for chy- and
the pointwise convergence of chy- to Xy in Section 4.2.1. Then we will use these results to prove Lemma 4.3
in Section 4.3.1 and Lemma 4.4 in Section 4.3.2, these complete the proof of Proposition 4.2.

4.2.1 Pointwise convergence of the characteristic function

For the approximating sequence of height functions h® described in (4.10), we denote Y¢ the corresponding
particle configurations for TASEP. It consists of exactly M clusters of densely packed particles. To lighten
the notations, we denote temporarily the indices of the rightmost particle of each cluster by to,...,ta—1,
from right to left. We have

1 1
t o= — e twi] — [5e720) + 1 = 2l twy], 0<i<M-1. (4.14)
Recall that we assume wg = 0y = 0. Thus
to=1, andwy, =0. (4.15)

The goal of this section is to analyze the asymptotic behaviors of the characteristic function chy-(v,u).
We write

1 1 1 1
U:—*+§E%§7 q):—f_f_fgé/r]_ (416)

2 2 2
The main result of this section is summarized in the following proposition:

Proposition 4.5. Under the same assumption as in Proposition 4.2, we have

(a) For any & € Cy,,n € Cg fized,

. 1 1 1 1 1 1 1 1
glg(l) 5¢” - chy- <—2 + 3¢ —5 + 5¢° ) = X5 (1, ). (4.17)

(b) Assume that € >0, and € € Cr,,n € Cg satisfy 0 < |1+ €%§| < 1. Then the following estimate holds

Ly L1, 1,1,
= - C € —_— = — —_— —
PR N T A R
: Y N Bt (4.18)
< 1 -1 . _
~ Re(n) * ) |14 ey M-1TVatt (2 — |1 4 e2£])tm-1-1

As a corollary, if we further assume that |8%f| <100~ and |e2n| < 100!, then we have

£3 1 ez 1 &3 cCUEP+ I +El+Inl+1)
na_f—i_ >

by [+ S 4.1
R R A R Re(n) ’ (4.19)

where C' is a constant that only depends on the parameters M and w;,0;, 0 <1< M — 1.

Proof. We will prove part (b) first. Note that the geometric random walk moves strictly downwards, so it
can only go above the boundary at the beginning of each cluster, namely

IP)(’T ¢ {to,. .. ,thl}) = 0.
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Here 7 is defined as in (3.4) and the indices to,...,tar—1 are as in (4.14). Hence,

. LNE UET S O
oC € R — —_—— p—
Ry (T TR Ty T

1

1, LG PR
=2 Z(1+g2§) ‘Eg,=- |:(1+5277> Gr 1 .(1—5217) 1T§max£{te}}
Z€L (4.20)

1 14+e38)%  (1—e3 k1
= Z Z Z ( €> ’ El 177; H)ptwrl*ti(zﬂrl - Zi)7

g2m)te
- .
2n)?2et+1 21tk

k=0 zi<ye, e>wy (1+€277) +e2n .

where p;_s(z — y) is the transition probability P(G; = z|Gs = y) for the geometric random walk (Gx)r>0
defined as in (3.3). It admits the following expression:

.
pts(z—y):2zy<y . )

t—s—1

fort —s € Zy and z —y € Z_. Then (4.20) implies

2 2

1 1 k—1
1 14+e3g| |1 —eanft (4.21)
<y Yy oy e el s,

1 1
aplzetl 2|tk
k=0  z<gyy, Zk>U, |1 +e2n] |1+ 27 i=0
0<i<k—1

9 Chlye 9 2 ,

(b) We bound each term on the right-hand side of (4.21) corresponding to index k. For k = 0 we have

[oe) 1 1
1+ e2&|?0 €2
e 1+ - ¢l - = . —. (4.22)
20=Yty+1 |1+52n|z0+ |1+8277|_|1+82§|
For £k > 1, we have
1 1 k—1
1 [1+e28[*  [1—e2pl™
€? Z Z 1 . 1 ' Hptwd*ti(zlﬁrl - ZZ)
%<y, >V |1 —|—6277|Zk+1 |1+€27’]|tk o
0<i<k—1
1 1
14+e2£]® |1 —e2pl™
D el L RV
20<Yig 2k > Uy ‘1+8277| k |1+6277|k
4.23)
1 to—tk Ytg 1 (
;1—82’{]% 1, 1+€2£ZO
252%' > e Cpy () > ﬁ
| +€277| 5:ytk—yt0+1 ZOZytk—5+1 | +€2n‘
X - ‘1+€%§|ytk —6+1 ‘1+€%§‘y:0+1
1 — g3plte 0tk I e, —o+1 T w1
= €%4| ;n| ' Z 11+ E%n‘_gptk—to(é) L tk; ‘HET‘ k
Uredl 2 1+ ebnl—[1+<3¢]
By the assumptions of £ and 7, we have
|1—s%77|<|1+5%77\, |1+€%§‘<1<‘1+6%77|. (4.24)
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Hence
tr Yt +1

1+5%§
1+5%77

1—5%77
1+5%77

, forall gy, —wy, +1<6, (4.25)

where we are using the fact that ty > 0 and y, > w, — d + 1 for all y;, — w, +1 < J. Thus, we conclude
that the right-hand side of (4.23) is bounded above by

1 1 1 to—ty
€2 L—eapl |1 +ezg]¥t! L
1 [ | 1 | ) | 1 | 1 Z 1+ e2€) "y 1, (9). (4.26)
T et —[Lreie [edalo tedgpnrt ,_ 2
Yt —Yto

The summation over § is bounded above by
1edg \*T°
1 €2
Y 4z py o (0) = <1> ; (4.27)
5<to—ts 2 —1+e3%¢|

which follows from a standard moment generating function computation for the geometric random walk.
Finally, note that |1 + 5%77| >1+ E%Re(n) >1forneCg and |14+ 5%§| < 1 by our assumption, we have
ez 1

< = .
14+ce2p|—|14+¢e2¢] ~ 14+e2Re(n)—1  Re(n)

S

€

(4.28)

By using the bound from (4.28) in (4.26) and summing over k, we arrive at the desired estimate (4.18).
For (4.19), we note the following simple inequality

Cylz| <log(|1 +z|) < Calz|, for all 2 satisfying |z| < 100~ 1, (4.29)

for some constants C; and C5 that are independent of z. Therefore by our assumption,

_ ep2|tm—
|1 —en’| < oCaln®letr—1=(IC1|+ICaD)Inlle! 2 Ctar 14y 1 +1)] < oClIn*[+lnl+1) (4.30)
|14 bt T = - ’

for some large constant C' by using (4.15). For the other factor, we note that

r(2—2)>1-¢* whenl-c<z<l4+cand0<c<l1. (4.31)
Therefore
1+e28|(2— [1+e2¢]) > 1—el¢?], (4.32)
and
2 2
(11 +<36l(2 — |1+ ehg) =¥ < (1 = efg?])tort) SOt OIS (139)

for some constant C' by using (4.15). Finally,
1+ el/ 2Pt tvs -1 < QUCLHIC2DIEN 212t 1wy, s -1l < (CUED), (4.34)
for some constant C by using (4.15). Combining the above estimates, we obtain (4.19).
(a) Now we prove part (a). We start with rewriting xy(7,¢) under the assumption that h € mNWy,

recall the definition of xy(7,&) from (2.9). For supp(h) = {wo,...,wam—1} with 0 =wp > -+ > wpr_1, one
has P(T4 # 0) = 0 where 7 is defined in (2.19). Thus, it is easy to check that the first and third term on
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the right-hand side of (2.9) are both equal to w and they cancel each other. On the other hand, since

P(r— ¢ {wo,...,wnm—1}) = 0, the second term on the right-hand side of (2.9) is given by

M-—1 k—1
sen+wrn® —sof H . .
E e . (8541 —s;)dsg---ds 4.35
Azei,ogigkq; J Pw; w1+1( i+1 z) 0 k> ( )
k=0 sk <Ok =0

B (sfs/)Q
where p, /(s —§') = \/ﬁe 4w-«" ig the transition density of a Brownian motion with diffusivity

constant 2. Thus for h € mNWj, we have

M-1 k—1
2_ o
Xb (17,5) = Z £A>9. ikt eskﬁ-‘rwkn so€ | H Pusi—wit1 (Si+1 _ Si) dSO .. 'dSk. (436)
k=07 T Z6n i=0

Now we fix £ € Cr,,n € Cgr, and consider (4.20). Use the following scaling and recall that wy = 6y = 0,
1
ti = —|e " wi) - L§57%9iJ +1, z=20etwi) = g2 — 0], v = 2le wil (4.37)

We write (4.20) as a multiple Riemann sum

1 L 1 n 1 1 1 n 1 %f
—e2 -chye | —= 4+ —e2n,—= 4+ —¢
2 T2t P
M-1 1 k—1 (4.38)
(1 +e2 5)20 2\t 1
= _ . - (1 —en”)t - € 2p, —t;(Zig1 — 2;) dsg - - - dsg.
ICE:;J Sizeis,gg;fk—l, (1 + Ein)zk+2tk+1 E) +1
Note that when s, ...,s; are all fixed, the factors in the integrand all converge as ¢ — 0:

(14e2€)% — o0,

(1 +€%n)zk+2tk+1 N eiskn,
) (4.39)
(1 —en?)t — e@rm"

1
€ 2pt,;+1—t7j (Zl+l - Z’L) — pwi—w7‘,+1 (Si+1 - Si)?

where the last convergence follows from the local central limit theorem or a direct computation using the
formulas. Thus, we formally obtain that the limit of (4.38) is equal to (4.35), therefore (4.17) follows.

In order to rigorously show the above convergence, we need to show that (4.38) is uniformly bounded
and the dominated convergence theorem applies. Note that the right-hand side of (4.38) is the same as that
of (4.21). Therefore, (4.19) gives a uniform bound for (4.38). This completes the proof. O

4.3 Convergence of the series expansion

In this section we prove Lemma 4.3 and 4.4. We will make the additional assumption that 0 < 71 < -+ < Ty,
to make the presentation lighter. The convergence results and arguments in this section still work if 7; = 7,11
for some i but the contours need to be chosen carefully to make sure that the integrand has the desired super-
exponential decay. Alternatively, one can directly work with the limiting KPZ fixed point formula which
is continuous with respect to the limit 7,47 — 7, and our choices of the angles in Figure 1 guarantees the
convergence of the formula (2.24) even when some time parameters are equal.

We will deform the u,v contours so that locally near the critical point f%, they look like the limiting
contours for £, 1. More concretely, let I't, be a contour in the left half-plane going from ooe27/3 2mi/3
and T'g be a contour in the right half-plane going from ocoe~"/> to coe™/5 (see Figure 1). For each ¢ > 0,

to ooe
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iR

1

Figure 3: The deformed u, v-contours. Inside the dashed circle is the region {w € C : |w + %| < 500

contours to be the same as their limiting counterparts shown in Figure 1.

}, where we deform the

we deform the u-contour ¥, and v-contour X (see Figure 2) so that the corresponding contours I'f, and I'f;
for the rescaled variables £ := 272 (u + %) and n = 232 (v + %) satisfy

~ . 1 .
ELCQia im{CeC:lC'S767%}:FLO{C€C:|C|S757%}7
100 100 (4.40)
S 0O ]- 1 1 1 .
DY QR R : < —eg 2 =T : <~ -—3%
R C iR, RO{CGC |<|_1005 2} RO{CGC |C|_1005 2}7
where
Simf{—e e izl <1}, Of = {eP4e izl <1} (4.41)

See Figure 3 for an illustration of the deformed contours. Note that
ueQ = €0, veQr — ne ;.

Recall the functions f; defined in (3.14). We now introduce some rescaled versions of them. For each
1<i<m, (e CpLUCg and ¢ > 0 sufficiently small, define

£(¢0) = (1 — ez )M Fir(1 4 5%g)wffl—kf)+(a§,1—af)e%(ti—til)s%<_ (4.42)

Here

1 _: 1 .
kj = 55_%74 —etay — is_fﬁg +0(1), a5 =2t +0(), t5:= % %7, forl<l<m, (4.43)

with the convention that k§ = ag = tj := 0. It is straightforward to check that
14 1.3
fe fi (—§+§€2€>
;(5) = 1 ) VgE(CLaUE(CRa
£ (n) fi (_% + %5577)

where f;’s are defined in (3.14) with the parameters chosen as in (4.43). We begin by stating the needed
estimates and asymptotics for the functions f;.

Lemma 4.6. Assume 0 < 1 < --- < Ty,. Let £f be defined as in (4.42) for 1 <i < m. The following holds.

(a) For any ¢ € Cp, UCyg fized, we have

lim £7(¢) = £;(¢) =: exp (;(Tz = 7i1)C + (@ — aim)C A+ (B — @'-1)() , 1<i<m. (4.44)

e—0

22



(b) There exists constants c¢,C > 0 such that

£5(¢)] < Cecmimi-VEP we e TS and |f5(n)| > C~teimmi-0I” vy e T, (4.45)
Proof. To lighten the notation we temporarily denote 7 = 7, — 7,1, « = a; — ;1 and 8 = 3; — 5;_1. Write

Q) =exp (737 gal(Q) + 70 2(Q) + 738 01(0))

where ) 1
91(¢) := —5 log(1 — £%¢) +  log(1 + £%¢),

92(¢) == —log(1 — £2¢) — log(1 +£2¢), (4.46)
g3(¢) == %log(l —e3() — %log(l +e3() e3¢

Part (a) follows from a straightforward Taylor expansion of (4.46). For part (b) we will assume ¢ =n € I'g,

the other case is similar. We split into two cases depending on whether |n] < ﬁs_% or not. Using the
elementary bound
A PR
log(1 — — | < —, V7| <1,
k=1
we have for |n| < %05*%:
l 33 2t o €2 3
—eipdl < < —|n|3.
g3(n) + ge2n”| < "nf” < 55l
Thus,
1 s 3 1 s 1 s 3
Re (g5(1)) > Re <—362n3> —|gs(m) + 3670°| = —ge2Re(n®) — ggee? Il = e nl?,

for some ¢’ > 0, due to our choice of the contour I'g. Similar argument shows that

l92(n)] < C'elnl?,  |g1(n)| < C'e2|nl,

1
2

for some C’ > 0. Thus for |n| < , we have

055
()] = exp (=¥ 7 Re(ga () + " - Re(ga(n)) + 8- Re(gs(n)) )
> explerlnf® = C'lallnf> = C'|B|In]) = Cexp(enf*),

for some constants ¢,’,C,C’ > 0. On the other hand, it is elementary to check that for n € QER\{|77| <

1 -1
T06€ 2}, we have

Re(gs(n)) = ¢3 >0, |g2(n)| < Ca,  |g1(n)| < Ch.
Thus, for such 1 we have

3
2

[££(n)] > exp(eze™2 — Coe™! — C1e7%) > exp(che™2) > exp(cs|n[*/8),

since in this region ﬁe_% < || < 2e~ 2. This completes the proof of part (b) and the lemma. O
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4.3.1 Proof of Lemma 4.3

Introduce the change of variables

) 1 1 ) 1 11 ¢
u = =3 +3ete), o) = =S+ 5y, (4.47)
for 1 </ <mand1<i, <ny. Itis easy to check that under this change of variables we have
”e+;z+1
C (U(e) L YD, @ U(z+1)) — (2 C (5(15) Untt, n® Y €(€+1)) ; (4.48)
€
2\

¢ (v, vim) - <8> ¢ (6m:n™), (4.49)

for 1 </ <m-—1. Asin (4 40), we split the &, n contours depending on whether they lie in the region
Q5 ={weC:|w < 1005 2z} or not, and deform the contours so that Il /g agree with I'y g inside .

Recall the definition of D( Z in (3.16) and D(n) in (2.24). Let A be the event that all the variables E(é ,m(f)
lie inside f for 1 < £ <m and 1 <14, < ny, and A€ be the complement. Define

m—1 m
(n,main) | 1 _ ZE ng+1 (H H / d/,bz 7«@ / d/utz(nfe))> 1A

l=11¢=1 Ter
m ng fg(é@)) " .
H H det €2Chya —%—{— 5277 , %4_%55@ N (450)
(l_lzj—l fgg(m‘(f)) [ ( H 1<4,5<ny
m—1
C(ﬁ(f LInz+1) nf) g+t ) C(é-(m) ( ))
=1

and Do) .— plr) _ plomain) Note that

_ - Ze)ne (1 mz+1 <H H / dps (€ /E dﬂz(ngf))> 14

l=11ip=1 Z,R

3

n,error
Do) =

—

~
Il
-

-~
o~

Il 3
) s
S
<h
—
m

NG
N~—

_1 1 1, 1.4
(n(@)) det [ €2Chys ( t 6277] —3 e )]1<i,j<n1 (4.51)
(73

,_.
-
N

Il

—
<u

3
L

C (g(a LD, p® £<e+1)) L) )y,

~
Il
—

We claim that:
(n,main) _ ~(n) . (n,error)
lim DYE =Dy, 21_% Dy, =0. (4.52)

e—0

For the first part of the claim, note that the integrand on the right-hand side of (4.50) converges pointwise
to the integrand on the right-hand side of (2.24) by Lemma 4.6(a) and Proposition 4.2(a). On the other
hand, the cubic exponential decay bound for |ff| from Lemma 4.6(b) and the quadratic exponential growth
estimate (4.19) nnphes that the integrand on the right-hand side of (4.50) has a cubic exponential decay in
every variable 77Z f ) as they go to oo, uniform in €. Thus, the dominated convergence theorem applies,
and the first claim is proved.

For the second part of the claim, note that on A€, at least one of the variables, say 59), lies outside

Q5. Then Lemma 4.6(b) implies that |fs(£11))| < Cexp(—ce~2) for all f(l) iL\(AZg On the other hand,
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Proposition 4.2(b) implies that

11 1 1T 1@ 1 1.1,
—e2chyve 2 R —c2
250y(2+2677 ) 2—1—2551
for some ¢,C' > 0 and all 1 < j < ny. The other parts of the integrand remain bounded. Thus,

< Cexples™), (4.53)

|D§/“E’error)\ < Qe (mttnm) -exp(—cs_%) —0, ase—0. (4.54)
This proves the second part of the claim, and Lemma 4.3 follows.

4.3.2 Proof of Lemma 4.4

Recall the expression (3.16) for Dg?. We first rewrite it slightly by writing ££(¢) = ££(¢)2 - ££(¢)2 and
putting one of the square root inside the first determinant, to get

m—1 nz 1 m e fe ([)
D =T -2 (1- ’ (H H/ dp= (&) / duz(m(f))> HH e(fzfe))

(=1 V4 1114 1 ¢,R
ny fe(g(l))l/Q |:fs(£(1))1/2 1 L (1) L (1)
Lol det | ST Ledehy (<4 + JebnlY, —1 + Lok } 4.55
(inl fe(nl(ll))1/2 ff(nﬁl))l/z 2 27732 j 2 2 i<, ( )

m—1
Il c (5@) LD, p® 5(e+1>> (™) pm)),
=1

Here the choice of square root does not matter as long as we make the same choice for the two. The advantage
of this rewriting is that

fe(eMy1/2 11 11
&) '§E%Chyg (_+€;n(1)7_+2€;§g1)>

<ec, V1<i4,5<n, (4.56)
e (1
f1(77j(‘ ))1/2 2 2 Y 2

for some constant ¢ > 0 independent of ¢ and €M), n). Thus, by Hadamard’s inequality

ere(1)y1/2 ni
det [f &) Lechy- (,% +Ledn), 14 LezeV } <nj o (4.57)
£y 1<i,j<n,
The same arguments imply that
CE™:in)| < nad” - D, (4.58)
and
ng+n np+n my M4l ng+n
O (€0 Un" D@ L) < ()T DT <nn g @D)TE T, (450)

for 1 < ¢ < m — 1. Here D is chosen to be the reciprocal of the minimal distance between different I
contours, which can be made positive. Thus,

|1 _ Z£|ne+m+1 1

" a d|§<”| itV e M)
(n)| < (Cl ni+-+nm () / i1 1
H |Z@|nz+1 H an - Fi,R o1 |ff( (1))|
m YA e
HH(HW)/ e d|n£>||f (& >| (160)
L=z ) Jrg, 2w 7))

=21, iR

H (1 + [zeqq])2merr ﬁ ne  omatetnm
ny* - ,
|Ze| =

no41 |1 —_ Zg|"f+1 nyg

NI

for some constant C' > 0, since each of the integrals is bounded by some finite constant. This completes the
proof of Lemma 4.4.
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5 From multiple narrow wedges to compactly supported initial
conditions

In this section we extend the multipoint formula (1.6) to any § € UC, using a density argument. We choose
to work at the level of the KPZ fixed point formula, which enjoys more symmetry and nicer decay properties.

5.1 Density and Approximation

Our starting point is the following proposition, asserting that our formula is continuous with respect to the
initial condition on the space UC.,.

Proposition 5.1. Given {h"},>1 C UC with supp(h™) C [—L,L] and sup,er b™(a) < B for all n > 1.
Assume h™ — b in UC and supp(h) C [-L, L], sup,eg b(a) < 3. Then

Jim e (7, €) = X0 (1), (5.1)

for all§ € Cyr, and n € Cgr. Recall the kernel xy, was defined in Definition 2.2, equation (2.9). Consequently,

m—1 m—1
. dZ@ ng
lim ] %7Dn v zme1) =[] 747D e Zmet)- 5.2
7L1—I>rolo =1 /0 27TiZg(1 - Zg) b (217 - 1) =1 J0 27‘(12@(1 - Zg) h(zl N 1) ( )

Proof. 1t suffices to show that

lim e’ EB(O):S [exp(77n£2 - B(Tn)g)l‘rn<oo] = /]Res77 ']EB(O):S [eXp(ngz - B(T)£>17'<oo] )

n—oo R

where
T:=inf{a >0:B(a) <h(a)}, 7n:=inf{a>0:B(a) <Hh*(a)},

for a Brownian motion B(«) with diffusivity constant 2. Here we have suppressed the + sign in the subscript
of the hitting time to lighten the notation. The convergence of the other two parts in the definition of xj
can be proved in the same way. From [MQR21][(B.20)] we know

Pg(0)=s(B(T) € db, 7, € AT) — Pg(g)=s(B(7) € db, 7 € dT) weakly as n — oco.

Take a smooth function 0 < gg < 1 such that gg(z) = 1 for z < § and gg(x) = 0 for x > S+ 1. Since
h(a) < B and h™(«) < B for all & € R and n > 1, we have

Ir, <oo(l = g8(B(m0))) =0, 1r<o(l—gs(B(7))) =0.
Hence,

]EB(O):S [eXp(_Tn€2 - B(Tn)f)l‘rn<oo} = IEB(O):s [eXp(_Tn€2 - B(Tn)§)1T7L<OOgB(BTn):| ’
IE:B(O)::? [exp(—7’§2 - B(T)€)1T<oo] = ]EB(O):s [eXp(_T€2 - B(T)g)]-‘rn<oogﬁ(BT)] .

By the weak convergence of (7,,, B(7,)) to (7,B(7)) we know
nhﬁngo ]EB(O):S [exp(anéQ - B(Tn)g)]-‘n,,<oogﬂ(BTn)] = EB(O):S [exp(fTEQ - B(T)g)lrn<och(B‘r)] 5

since the function f(T,b) := exp(—T¢* — b€)1r<0ogp(b) : [0,00] x R — C is bounded and continuous.
Therefore

lim Eg(o)=s [exp(—Tn&” — B(10)8)1r, <o0)] = Ep(0)=s [exp(—7E* = B(T)&)1r, <o) -

n—roo
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Finally, using the bound obtained in Proposition 2.3 and the dominated convergence theorem we have

lim [ e Eg(o)s [exp(—Tné* — B(1:)&)1r, <o0] = /R e*" - Ep(o)=s [exp(—T& — B(T){)1rcoo] -

n—oo R

This completes the proof of (5.1). (5.2) follows from the dominated convergence theorem and a similar
bound as in Lemma 4.4 whose proof is almost identical, and we omit it here. O

To extend (1.6) to all h € UC, using Proposition 5.1, we also need the following proposition, asserting
that the space mNW is dense in UC..

Proposition 5.2. Let h € UC,.. Assume that supp(h) C [—L, L] and max,ecr h(a) = 8 < co. Then there
exists a sequence {h™},>1 C NW, such that supp(h) C [~L, L], maxaecr b < B for alln > 1 and

h" = b in UC, asn — co.

Proof. We will use the following characterization (see, e.g., [MQR21, Section 3.1]): a sequence {h"},,>1 C UC
converges to h € UC locally if and only if for any x € R, one has

1. limsup,,_, ., b(xn) < b(x), for all x,, — x;
2. There exists x, — x such that liminf, . h(x,) > h(x).

It suffices to consider the restrictions of the functions on [—L, L]. For each n consider the dyadic intervals

Ing = [2% - L, k;l L], for k = —-2" —2"+1,...,2" — 1. On each interval I, ; the maximum of h exists, let

My, € I i be one of the argmax, and set

2" —1
hn(a) = Z h(mn,k)la:mn,k — 00 ]-a;émn,k,Vk;
k=1

here if some m,, ; is the argmax of two consecutive intervals, then it should appear only once in the sum.
Now it is straightforward to check that for each «

limsup ™ (™) < h(a),

a”—a

and there exists o™ — « such that
liminf h™(a™) > ().
«@

a—

Therefore, h™ — § locally in UC, and hence globally since h™, § are supported in [—L, L]. O

5.2 Proof of Proposition 2.4

Recall that what we have shown in Proposition 5.2 is that the formula (1.6) holds for initial conditions
h € mNW,. We would like to prove it for h € mNW by a shift argument. To this end it is more convenient
to have a more general version of the characteristic function xy, defined through (2.18), instead of the original
(2.9). The goal of this section is to prove the equivalence of the two, i.e., Proposition 2.4. To this end, we
denote

X5 (. &) = e_wgz/

R

2
e [ 5ot Ba, [oxp (<726 = B(r)E) Lrrc

dse™¢ “EB(w)=s [exp (79n” + B(1)n) 1,.f>_oo}

— /Rds EB(w)=s {exp (7'1’772 +B(r¥)n — TifQ — B(T_‘;’)f) 1|.,.;|<OO}

=X 0,8 + x5 (0,€) = x5 (0, ),
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where
77 :=inf{la >w:B(a) < h(a)}, 79 :=sup{a <w:B(a) < h(a)}.

We claim that xj = X‘;;l, for any w € R. First assume h € mNW, say

k
b(a) = Zeila:wi — Oola;,gwi’w,
i=1
where wy > -+ - > wg. To lighten the notation, we will fix 1, £ and denote
B (w,8) == By [oxp (7862 = B(r)6) Loz cuc|
B~ (w,5) i= Bpuy=s [exp (+70% + B(r2)1) Lros o]
For w € w1, ), we have

Xo(n,€) = e /Rds / dby e Py, (by — 5) B (w1, by)

— o€ /]Rdbl e "B (wy,b1) = X;J%l(n’ &)

where we are using the Markov property and the simple identity
/ dse*Wpy(r —s) = tWErW (5.4)
R

Recall that ps—s(x — y) is the transition density of a Brownian motion with diffusivity constant 2. On the
other hand,
w1 (=€) 401 (n—€)

n—¢
Thus xp = X;Jl for all w > wy. We proceed by induction. Assume for some 1 <i <k, x¢' = X:l holds for all

w > w;. Now let w € [wi1,w;). We will show X} = X‘b“", which is equal to X‘f;’l by the induction hypothesis.
By the same argument as above we have

Xe 2 (0,6) = X572 (0,€) = Lumu, , Yo > w.

ewit1(m” =€) +0i11(n—£)

Xo 2 (1:€) = X5 2 (1,€) + Lomuny, — (5.5)
On the other hand, by the Markov property and the identity (5.4) we have
wi (1> —€2)+6:(n—¢) oo
Wiy ¢ —w;€? —0i -
e () = e / dbi/dse €D (5 — bi) B (w,5)
n—¢ 0; R (5.6)
ewi (1 —=€)+6;(n—¢) . » [0 )
= i + X?;’ —ewil / db; / ds e_bifpwi,w(s —b;) B (w,s),
n— —00 R

where in the second equality we used Fubini’s theorem and the identity (5.4) to show that

ewit” / db; / dse™"p,, (s —b) B~ (w,s) = et / dse ™. B~ (w,s) = X;”l.
R R R

Finally,
X:’s(n,«f) = /]RdsE_(w, s)- Et(w,s)

= / ds B (w, s) - (/ db; P, —w(s — bi)E1 (wi, b;) + lo—wiy Comwir1€l st 1s§0¢+1) )
R R
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We split the b;-integral into two parts depending on whether b; < 6; or b; > 6;. For b; > 6; we have
[ 45 B 90pus -l = ) = B b,
by the Markov property. For b; < 6; we have
Et(wi, b)) = e*“”igtbiglbiggi.
Thus

00 0;
Xh73(n7 g) = /0 ds E+ (wi7 bZ)E (wiv bZ) +e € / dbl /]R dse blgpw—wi (S - bz) E (w7 S)

: 5.7
eW'i+1(772_£2)+91'+1(77_€) ( )
+ 1W:Wi+1

n—£
By combining (5.5), (5.6) and (5.7), we conclude that

wi,2 wi,3

,1 ,2 ,3 isl i
X;}:X‘f;} J'_X:)J _X: :X: Xy~ Xy :X(;;7
for all w € [wi41,w;). Thus, by induction x§ = xp for all w € R and h € mNW.

For general ) € UC,. supported on [—L, L], bounded above by 3, we use Proposition 5.2 to find a sequence
{h"}>1 € mNW bounded above by 8 whose supports are contained in [—L, L] , such that h” — b in UC.
Then by Proposition 5.1 we know xp» — Xy as n — oo. A minor variant of Proposition 5.1 with the same
proof shows that xy. — xj as n — oo for any w € R as well. Thus,

w 3 w 3 —
Xo = i e = T X = o,

for all w € R and h € UC,.. This completes the proof of Proposition 2.4.

5.3 Proof of Theorem 1.2

Recall that in Proposition 4.2, we have shown Theorem 1.2 for h € mNW . We first extend it to h € mNW
using Proposition 2.4. There exists o, 8 € R such that h*8 := h(-+a)+ 3 € mNW. Thus, by the invariance
property of the KPZ fixed point (see, e.g., [MQR21][Theorem 4.5]) we have

P (ﬂ{H(ae,n; h) < m}) =P (ﬂ{%(ae — o, 73 h™P) < By + 5}) . (5.8)
=1

{=1

We apply Proposition 4.2 to the right-hand side of (5.8) and compare the resulting formula with the right-
hand side of (1.6). In order to prove that Theorem 1.2 holds for h € mNW, it suffices to show that

2 2
Xp(n, €) = e —EIHBE s (1, €). (5.9)

Now we prove (5.9). By the definition of the characteristic function in (2.9), we have
Xpes (1, €) = / dse™** - Ep(g)—s {GXP (73’5772 + B(Ti"’ﬁ)ﬁ) 1Ta,a>_oo]
& °
+s B ¢2 B
+ /Rdse " Eg(0)=s [exp (—Ti & —-B(t} )f) 1T$’ﬁ<oo:|
— / dsEg(g)=s [exp (73’5172 + B(Tf’ﬁ)n) 17_a,ﬁ>_oo]
R °

.EB(O):S {exp (—Tf’ﬂEQ — B(Ti’ﬁ)f) 1T$‘B<ooi| )
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where

Ti’B =1inf{x > 0: B(x) < h(x + a) + 8}, TP = sup{x < 0: B(x) < h(x + a) + 8}.
Note that B(x) < h(x+«a)+ g if and only if ﬁ(x—l—a) < h(x+ ) where ]§(x) := B(x—a) — . The invariance
of the Brownian motion implies that

Lawg(0)=s (17, B(1%)) = Lawg . _5(F+ — o, B(F}) + B),
() B

where
T_ :=sup{x < a:B(x) < hx)}.
Thus

/Rds e *¢  Ep(o)=s [exp (‘ri’“‘ﬂn2 + B(Tf’ﬁ)ﬂ> 1_,_5,;3>_oo}
= /Rds e %8 "Ef(a)=s_p {exp ((?_ —a)n? + (ﬁ(?_) + 5)77) 1?-_>—oo]
— B—&—an’ /Rds e ¢ 'Eﬁ(a):s [exp (’/7'\7772 + ﬁ(ﬁ)n) 1;_,>,Oo] .
By applying similar arguments to the second and third term, we see that
eo‘("2_52)+5(5_")xha,ﬁ (n,&) = et /Rds E&(a)=s [exp (?_772 + ﬁ(‘?_)n) 1?-,>—oo}
e [ sBg, [oxn (<746 < BRE) 1r,

_ /RdSEIAB(a)ze |:eXp (?_772 —|— B(?_)T] — :l'\+§2 _ B(?+)§> 1‘?i\<oo:| )

which is equal to Xy, and hence xp, by Proposition 2.4. Finally, for a general ) € UC., we can choose a
sequence {h"},>1 C mNW such that h” — b and they satisfy the conditions in Proposition 5.2. By the
continuity of the law of the KPZ fixed point with respect to the initial condition, we know

lim P (ﬂ{%(ae,m h") < m}) =P (ﬂ{%(az,m h) < m}) :
£=1 £=1
Hence, by Proposition 5.2 we have

P (ﬂ{H(abTe; h) < ﬁe}) = lim P (ﬂ{H(aé7Té§ h") < ﬁe})
=1

{=1

im 1 oD )

= 1m T —— N\ Z1yeeey Zon—

nvoo L fo 2wizg (1= )70
m—1

dZ[
= — D _1).
Zzl_[l %; 27_[_124(1 . ZZ) b(zh s Zm 1)

This completes the proof of Theorem 1.2.

6 Reduction in the equal-time case

The goal of this section is to simplify the multipoint formula (1.6) under the additional assumption that
all the time parameters 71,...,7,, are the same, say, equal to 1. We will show in Section 6.1 that one can
get rid of the additional contour integrals with respect to the parameters z;’s in (1.6), and get a Fredholm
determinant formula for the equal-time multipoint distribution. Then, in Section 6.2 we will show that the
Fredholm determinant formula matches the path integral formula in [MQR21].
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6.1 A new Fredholm determinant formula for the equal-time multipoint distri-
bution of the KPZ fixed point

The following Fredholm determinant formula holds for t he KPZ fixed point with a general initial condition
b that is compactly supported. We remark that an analogous Fredholm determinant for the narrow wedge
initial condition was obtained in [LO25, Proposition 2.1], with the kernel conjugated to T below and defined
on a slightly different space.

Proposition 6.1. Leta; < -+ < auy,. Consider the KPZ fized point starting from initial condition h € UC,.

Then the following formula for the multipoint distribution at space-time points (a1,1), ..., (am,1) holds:
P <ﬂ H(a, 1;h) < ﬂe) =det(I+Th)r2¢{1,....m}xI1 1) (6.1)
=1

where the operator Ty : L2({1,...,m} x 1 r) = L*({1,...,m} x T'1 r) has the following kernel:

o) IDei Fe@) xom, &) 1
) (H /F‘“ 27”) m1(& =) (& -0 Hin) (6.2)

Here T =Ty 1, and

) -3 Han?+61¢ -
Fi(¢) = ,fl(g) :={e e, =1 (6.3)

e(ai—ai—l)Cz'F(ﬁi—ﬁi—l)C, 2<i<m.

The proof of Proposition 6.1 is based on the following lemma, whose proof is almost identical to [LO25,
Lemma 2.4] and is omitted here. Note that the only difference (modulo obvious change of notation) between

(6.5) and [LO25, (2.31)] is that the Cauchy determinant C(n, §) is replaced by det (Xh (772), g)))

Lemma 6.2. Under the same assumption as in Proposition 6.1, we have

m 1 A(n)
P (m H(ap, 1;h) < ﬁé) = Z mDh ) (6.4)
£=1 N1 20, >0

where n = (ny,...,ny) € ZT and

o €0 1 gt 1
Dy = 0] ) OIIIAMﬁmh/I2;>dm[(%’é)}ﬁﬂMﬂﬂ

i=10;=1 1<4,j<m, 1<, <k;

(6.5)

m m  k;

L et [t )" 11 )

i=1 i=14; _1

Here k; :== n; — n;11 > 0 with the convention that ny,+1 := 0. The functions h;(§,n) are defined for all
(&,n) €T, xT'1 g as follows:

Fi(§) i1
1 |
hulom) = li[/ dge Fl(g) T Fe(&e) 9 <5< m. (6.6)
i i, 2T (E — &) - o — &) - (& =) -
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Proof of Proposition 6.1. We apply a generalization of the Andreief’s identity obtained in [LO25, Lemma
1.2] to the &-integrals. It gives

m m  k; (2) ()
A(n) (ni!)Q dngi @ A O Xh(ngj 1)
Dy = H kil H H oai ) et ot (6101 )

fj(nzj )

().G:E)  (6.7)

) (O T d’hgi) @ ()
=11 ;! HH/ omi ) 9 [T”(Z o33 >]<i,ei>,(j,tzj>’

where T (4, (;j,n) is defined as in (6.2). Thus, we have

m ki
P (ﬂ H(ag, 1;h) < ﬂe) = > (H I1 / ) det [Th(z s g, 772 ))} .G)

=1 kl,.“,km>o i=16,=17T1R

= det(I + Th)LQ({l,‘..,m}XFLR)'

6.2 Equivalence with the path integral formula of [MQR21]

The goal of this section is to prove that the equal-time multipoint formula (6.1) is equivalent to the following
path integral formula obtained in [MQR21] when the initial condition is compactly supported.

Proposition 6.3 (Proposition 4.3 of [MQR21]).

(ﬂ’H ag, 1;h) < 5’5> = det(I— KPP™ 15,6l 70001 o 1p el0mm e KIS0 o o) (6.8)
/=1

We will first express the path integral kernel in terms of contour integrals, the result is summarized in
the following proposition.

Proposition 6.4. Assume h € UC,.. Let

Sf) = Kkllypo(h) + 1<ﬂ e((Il Oéz)a 1<ﬂ2 lgﬁme(am—al)82Khypo(h)

1,a1

Then we have the following contour integral representation for the kernel of Sy:

d¢ dn f;(§) (4—Br)e—(A—
- -1 'l - . . eB=B1)E—=(A=B1)n
Sp(A, 1) A> By /FlL 51 Smify () xp(1,6) - e

I r

(6.9)

m

de; dn TIo, Fe(&) - xu(n, &) el=B&—(=Bé
1 o L .
! Z = <H /m 27r1> /FLR 2mi HZ;E(& — &) (& —n) fi(n)

Proof. First note that by writing 1<g,, =1 — 153, , we have

(1 —a2)d?

R P Nl
= 1§,816(a1_a2)82 o 1§,6m,1e(am_l_al)azK}f,th)f(h)
_ lgﬁle(alfaz)c’)? .. ]_Sﬁm_le(oémflfam)1>ﬁme(amfa1)a Khyopé)lo(h)’

where we are using the semigroup property

e(o‘m*_O‘mwQe(o‘m_al)azKlll?,oE’f(h) B e("‘m”_al)azK??,o?f(h)
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Repeating this argument for 1§ﬂ1e(‘“_“2)a2 - 1§ﬁie(“i_“1)82K}f,y§f(b) with ¢ =m —1,...,2, we see that

_ Khypo(b) +1p, e(al—a2)321<ﬁ 1o, e(am—(xl)athyPO(h)

1,0 1,0n
h © al—a ai_1—a;)d? a;—oq hypo (6]‘0)
=-1.5K 13’51 Zl</3 of 2)8% i 1e( i—1—a;)d 125, oloi—a)d? ¢ 7Y(§’1 (b
Now recall the definition of Klllﬁ)f(h) from [MQR21, (4.5)]:
KPP = (SPR07)) Sty 4 S5, SPT) — (507 e, (6.11)
where d a
’I] _te3 2 (o
S — g = End+an®+(p—a)n _ / 5 o587+l = (p—9)¢ 6.12
0.0 = Sialap) = [ ol [ e L 61
and .
h
St,};pO(b '(9,4) = Eg(0)=p [St.o—rs (B(T4), @)1, <c0] - (6.13)
We have
* hypo(ht
S ST (p,q)
= / ds / ﬂeénB—a1n2+(s—p)n -EB(0)=s / i?e—%53+(a1—T+)g2+(q—13(f+))g
R r, g 27 Ty, 2mi
d¢ dn e 38 +a€+ae )
= — 2" [ dse® - En_ — _B
/1‘1 L 2mi Tin 21 =5 +a1n?+pn /1R 5¢ B(0)=s [exp( T+ (ﬂ-)g)] )

where the change of order of integration is justified by Proposition 2.3. A similar computation for the other
two terms in (6.11) implies that

h dg
K YPo(b)(p’ q) 7\/ = A . .
ryp 27 Jr, g 27l =3P Fan®+pn

dfr] ef%£3+a1£2+q£
X(1,€), (6.14)

where xy(n,§) is defined in (2.9). Thus

1¢3 2
o hvpo d§ d77 e~ 38"t +q¢
i—a1)9? Kp (h)(p7 q) :/
I

(
e —_— .
Lea 2mi Jp, p, 2mi e a0’ tein®ten

X (1, €), (6.15)

for 2 < i < m. On the other hand, for 2 < i < m, the heat kernel el@i1=ai)d? an be expressed as

p—q)2 .
e(ai—lfﬂéi)82 (p’ q) _ 1 eim — / digz_e(qu)gi . e(aifo‘ifl)giz, (6.16)
4 (o — 1) cHiR 271

for any ¢ € R. Thus the convolution e(o‘lf‘l?)éﬁlgg2 e(e2=a3)9” hag the following kernel:

B
e(al—a2)821§ﬁ2e(azfa3)32 (p,q) :/ L&/ ’ er/ di&’efpé2+r2£2*r2£3+q£3 ,e(a2*a1)§§+(0¢3*a2)§§
C: C,

2+iR 27 5+iR 2mi
dés A&y elBr—P)éat(a=Ps)és
co+iR 471 Jes iR 471 & — &3

where F;(¢) =: elaimai-)C+Bi=Bi-1)¢ and ¢y > cs. Similarly, for any 2 < i < m we have

(Bi—p)€a+(q—Bi)&i  _°
(1 —2)0? (i—1—ai)d @ €
€ l<p, - 1<p; e / - — || Fel&e), (6.17)
’ 1 (H ce+iR 2 o (& — Eo41) g[[g
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where ¢ > - -+ > ¢;. Thus

e(a1 (!2)0 1<IB 1751 e(OéL 1— 0(1)8 1 > B e(OLL al)a Khyp()(b)(p, q)

1,01
i d d dn e(Br—P)&+(r—B)E; o L€ tare a6
- / 2& / / 261 / 277 HH(&)WM(%&)
y5 J coHR 2T ryp 271 1 H[ 5 (& — 1) e e 37 in“+trn (6.18)
_ z / dﬁg / dfl / —p)é2+(g—PB1)&1 HF@ fg ) Xh(n 51)
1—2 cg+iR 2mi INT 2mi I'ir 27“ Hg 2 5@ g[—i—l) (7’ g’L — )
By combining (6.18) with (6.10), we arrive at the desired expression (6.9) for Sy (A, u). O

Finally we rewrite Ty properly to match with Sy. Deform I'y 1, and Figer into two vertical lines ¢; + iR,
1 =1,2, with 0 > ¢; > co. Then we have

1 0
= / d)\ e/\(fl_EZ)7
51 - 62 —o00

for any £ € T'y 1, and & € T'. Now we write Ty := Ly Ly, where Ly : L*(R) — L*({1,...,m} x I'; r) has
the following kernel:

7)\C1)\>07 Z — 1’
s, Hz o Fe(€e)e e 1 b o (6.19)
H /Fm 27l HZ 5 §e §€+1) ] (Ez _ C) A<0, <i1<m,

and Ly : L2({1,...,m} x 1 r) — L?(R) has the following kernel:

L) = [ e 0.0 (6:20)

Then we have

det(I + Tb)L2({17~~7m}XF1,R) = det(I + L1L2) = det(I + Lng) = det(I + /S\h)L2(R)7

where
h(\, 1) = Z/ 7L2/\zn)L1(Znu)
Iy,
d€ £1(8) re—pn
— . -1
/FIR = /FIL 2 fu (1) X (1,€) - Luso (6.21)

d¢, T,_, Fe(&) oues .
+Z rug 2 (H /r 27”) h (& — 1) - (6 —m) Ein) xo(m.61) - Luso.

Comparing (6.21) with (6.9), we see that gh(A,u) =Syt + S1, A+ B1). Thus
det(I+ Sp) r2(r) = det(I + §b)L2(R) =det(I+Tp)r2({1,....m}xT1.r)-

This completes the proof of the equivalence between Proposition 6.1 and 6.3.
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