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Abstract

The KPZ fixed point is a universal limiting space-time random field for the Kardar-Parisi-Zhang

universality class. While the joint law of the KPZ fixed point at a fixed time has been studied extensively,

the multipoint distributions of the KPZ fixed point in the general space-time plane are much less well

understood. More explicitly, formulas were only available for the narrow wedge initial condition [JR21,

Liu22] and the flat initial condition [Liu22] for the multipoint distributions, and the half-Brownian and

Brownian initial conditions [JR22, Rah25] for the two-point distributions.

In this paper, we obtain the first formula for the space-time joint distributions of the KPZ fixed point

with general initial conditions of compact support. The formula is obtained through taking 1 : 2 : 3 KPZ

scaling limit of the multipoint distribution formulas for the totally asymmetric simple exclusion process

(TASEP). A key ingredient is a probabilistic representation, inspired by [MQR21], of the kernel encoding

the initial condition for TASEP, which was first defined through an implicit characterization in [Liu22].

Moreover, we also verify that the equal time version of our formula matches the path integral formula in

[MQR21] for the KPZ fixed point when the initial condition is of compact support.

1 Introduction

1.1 Background

The Kardar–Parisi–Zhang (KPZ) universality class [KPZ86] contains a broad family of random growth

models in (1+1)-dimensions, including models from directed polymers [Sep12, COSZ14], interacting particle

systems [Joh00], stochastic partial differential equations [KPZ86, Hai13], etc. In the past four decades, the

KPZ universality class has become a central subject of study in probability theory, statistical mechanics,

and mathematical physics. For a more thorough introduction, we refer to the surveys [Cor12, Qua12, Zyg22]

and the references therein.

A hallmark of this class is the universal 1 : 2 : 3 scaling exponent for height fluctuations, spatial correla-

tions and temporal correlations and a conjectural universal scaling limit for all the models in the universality

class. More precisely, it is conjectured that the random height functions H(x, t) describing the evolutions of

different models will all converge to a universal limiting space-time field H(α, τ), under the following scaling:

lim
ε→0

c3ε
1
2H(c2αε

−1, c3τε
− 3

2 ; hε) = H(α, τ ; h), (1.1)
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where hε and h are the initial conditions for the height functions before and after the limit with hε → h in a

proper sense. A central question in this area is to understand H(α, τ ; h).

The field H(α, τ ; h) is known as the KPZ fixed point. It was first constructed in [MQR21], and can be

described as a 1 : 2 : 3 scaling invariant Markov process on the space of upper semicontinuous functions

on R with explicit formulas for its transition probability. Convergence to the KPZ fixed point has only

been shown for a few special models, see [MQR21, NQR20, Vir20, MQR25, Wu23, ACH24a]. An alternative

description is through a Hopf-Lax type variational formula [NQR20], with the driving force given by the

directed landscape L(y, s;x, t). This is another universal limiting object in the KPZ universality class first

constructed in [DOV22]. Convergence to the directed landscape are shown for a few special models in

[DOV22, DV21, Wu23, ACH24b, DZ24].

It is well known (see, e.g., [BDJ99, Joh00, ACQ11]) that for special initial conditions, the one point

marginals of H(α, τ) are described by the Tracy-Widom distribution and its relatives. Extensions to joint

laws of multiple spatial points at equal time were obtained in [PS02, BFPS07, BFS08, BFP10], leading

to explicit descriptions of the spatial process H(·, τ) for special initial conditions. In the breakthrough

work [MQR21], the authors were able to find explicit Fredholm determinant formulas for the joint laws of

H(α1, τ ; h), . . . ,H(αm, τ ; h), starting from general upper semicontinuous initial conditions. This leads to

a complete description of the Markovian dynamics of the fixed point. We also remark that the results of

[MQR21] were further generalized in [MR23a, BLSZ23, MR23b].

Joint laws along the time direction, or more generally in space-time, are much less known until recently.

For the narrow wedge initial condition, a formula for the multi-time distribution was obtained by [JR21],

which builds on the earlier work of two-time formulas in [Joh17, Joh19]. A different multipoint formula which

works for both the narrow wedge and the flat initial conditions and possibly equal time parameters, was

obtained in [Liu22]. We remark that a direct proof of the equivalence between the two formulas for the narrow

wedge initial conditions is still missing due to the complicatedness of both formulas. Two-time formulas for

half-Brownian or Brownian initial conditions were also obtained recently in [JR22, Rah25]. Besides these

distribution formulas, there are also results on the correlation or tail properties of KPZ models at two times,

see [dNLD17, dNLD18, LD17, Joh20, FS16, FO19, CGH21]. We point out that all these mentioned results

on the multi-time problems are studying the KPZ fixed point on R and with special initial conditions. It

is also worth mentioning the related work [BL19, BL21, Lia22] for the multipoint distributions of TASEP

models in periodic domain.

In this paper, we obtain the first formula for the space-time joint distributions of the KPZ fixed point

with general initial conditions of compact support. We will discuss in more details in the following section.

1.2 Main results

The main goal of this paper is to describe the space-time joint distributions of the two-dimensional random

field H(α, τ ; h), with sufficiently general initial conditions h, in the same spirit as in [MQR21]. We start with

introducing the spaces of initial conditions we will consider. The largest possible space of initial conditions

from which the KPZ fixed point will be almost surely finite at all positive time is the following:

UC :=

{
h : R → [−∞,∞) upper semicontinuous, h ̸≡ −∞ and lim sup

x→±∞

h(x)

x2
≤ 0

}
. (1.2)

For technical reasons, We will mostly work with the dense subspace of UC consisting of functions that are

−∞ outside a compact set.

Definition 1.1 (The function spaces of initial conditions and topology). Define

UCc := {h ∈ UC : there exists L > 0 such that h(x) = −∞ for all |x| > L}. (1.3)
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The space is equipped with the topology of local Hausdorff convergence of hypographs. We will call functions

h ∈ UCc compactly supported, where the support of h ∈ UC is defined as

supp(h) := {x ∈ R : h(x) ̸= −∞}, (1.4)

and A means the closure of the set A.

Our main results are formulas for the joint distributions of the KPZ fixed point starting with initial

condition h ∈ UCc, at arbitrary many distinct space-time points (α1, τ1), . . . , (αm, τm). To state the result,

we introduce the following total ordering ≺ on the space-time plane R× R:

(α1, τ1) ≺ (α2, τ2) ⇐⇒ τ1 < τ2, or τ1 = τ2 and α1 < α2. (1.5)

Theorem 1.2. Let h ∈ UCc. Then for any m ≥ 1 and any m space-time points (α1, τ1) ≺ · · · ≺ (αm, τm) ∈
R× R+, we have the following formula for the multipoint distribution of the KPZ fixed point H(α, τ ; h):

P

(
m⋂
ℓ=1

{H(αℓ, τℓ; h) ≤ βℓ}

)
=

∮
0

dz1
2πiz1(1− z1)

· · ·
∮
0

dzm−1

2πizm−1(1− zm−1)
Dh(z1, . . . , zm−1), (1.6)

where
∮
0
denotes an integral along a circle around the origin with counterclockwise orientation and sufficiently

small radius. The function Dh(z1, . . . , zm−1) is defined as a Fredholm determinant in Definition 2.1. An

equivalent definition through a series expansion will be discussed in Section 2.2.

Similar as in the narrow wedge case [JR21, Liu22], our multipoint formula for the KPZ fixed point with

a general initial condition has the form of contour integrals of a Fredholm determinant. The Fredholm

determinant Dh has a block diagonal kernel acting on nested Airy-type contours. The dependency on the

initial condition is only through the top-left corner of the kernel, characterized by a function χh(η, ξ) defined

on certain Airy contours, see Section 2.1.1 for its definition. For the narrow wedge case, our formula recovers

the one in [Liu22].

The function χh(η, ξ) is defined in terms of Brownian motion hitting expectations, an idea highly inspired

by [MQR21]. Indeed, χh(η, ξ) should be understood as the Brownian hitting operators in [MQR21] written

in Fourier-like spaces. Nevertheless, we stress that our results do not follow directly from [MQR21]. In the

multi-time situation, direct connections to determinantal point processes and the Eynard-Mehta theorem

are lost and the bi-orthoganalization procedure here arises differently and takes a different form. On the

contrary, our results are, in some sense, more general. Indeed, if we set the time parameters to be the same

(which is allowed in the assumption of the theorem), the right-hand side of (1.6) can be shown to recover

the formulas in [MQR21], after some quite non-trivial manipulations. We refer to Section 6.2 for the details,

see also [LO25] which treats the special narrow wedge case.

1.3 Outline of the proof and some discussions

Theorem 1.2 is proved by taking a 1 : 2 : 3 scaling limit of the corresponding multipoint distribution formulas

of the totally asymmetric simple exclusion process (TASEP). The starting point is an algebraic formula

obtained in [Liu22, Theorem 2.1] for the multipoint (space-time) distribution of TASEP starting from any

right-finite initial condition. The dependency of the TASEP formula on the initial condition is encoded in a

function chY (v, u), which is characterized by an implicit reproducing-type property, see Definition 3.1. An

explicit form of chY (v, u) in terms of symmetric functions was also obtained in [Liu22], which is suitable for

asymptotics for the step and (pseudo) flat initial conditions. Thus it led to the corresponding multipoint

formula in [Liu22] for the KPZ fixed point starting from the narrow wedge and flat initial conditions after

taking limits.
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A key ingredient of this paper is an explicit probabilistic representation of the function chY (v, u), through

a hitting expectation with respect to geometric random walks, see Theorem 3.4. The probabilistic repre-

sentation is suitable for asymptotic analysis for more general initial conditions and leads to the Brownian

hitting representation in the limit. For technical reasons, we first take the limit of the TASEP formula under

the assumption that the KPZ fixed point starts with initial conditions consisting of finitely many narrow

wedges, and then extend the formula to compactly supported initial condition at the level of the KPZ fixed

point, using a density argument and the continuity of the law of the KPZ fixed point with respect to initial

conditions.

Finally, we comment on our assumptions on the initial conditions. It would be desirable if one can get

a formula that works for all initial conditions h ∈ UC, in particular, the flat initial condition h ≡ 0. The

reason we choose to restrict to the subspace UCc is not merely a technical issue. There are genuine structural

difficulties in this generality: the characteristic function χh(η, ξ) of the initial condition (see Definition 2.2)

may not be well-defined pointwisely in general. It might be possible to define χh(η, ξ) in a proper sense

case by case when h is not compactly supported. Indeed, for the flat initial condition h ≡ 0, one can show

from our formula that χh(η, ξ) is the dirac delta integral kernel δη=−ξ [Liu22]. However, our current strategy

requires to control the rate of the growth of the kernel, where compactness of the initial condition is needed.

It might be possible that one needs to interpret χh(η, ξ) in the sense of distribution instead of a function.

It might also be possible to conjugate our formula to real spaces so that the limit when the support goes to

infinity exists, at the level of operators acting on real spaces. We leave it as a future project to extend our

formula to any h ∈ UC, with a proper way to understand χh(η, ξ).

Notation and conventions

Throughout the paper, we will mostly use English letters x, t, h, u, v, w, . . . for the pre-limit (TASEP) formulas

and Greek letters α, τ, β, ξ, η, ζ, . . . for the limiting (KPZ fixed point) formulas. A detailed summary of the

notation we use is in the following table.

Notation Pre-limit (TASEP) formulas Limiting (KPZ fixed point) formulas

time, space, height t, x, h τ, α, β

initial height function h(·) h(·)
the height function H(x, t; h) H(α, τ ; h)

integration contours ΣL,ΣR ΓL,ΓR

integration variables u, v, w ξ, η, ζ

Organization of the paper

The rest of the paper is organized as follows. In Section 2 we present the formulas for the main part Dh

appearing in Theorem 1.2, both as a Fredholm determinant in Section 2.1, and as a Fredholm series expansion

in Section 2.2. Then in Section 3 we present and prove the corresponding pre-limit formulas for TASEP, in

particular in Section 3.1 we prove that the characteristic function of the initial condition is given by a random

walk hitting expectation. In Section 4 we prove convergence of the TASEP formulas to the KPZ fixed point

formulas, under the assumption that the initial condition of the KPZ fixed point consists of finitely many

narrow wedges. We then extend the KPZ fixed point formula to any compactly supported initial condition

in Section 5. Finally, in Section 6 we show that at equal-time, our formula reduces to a genuine Fredholm

determinant, which is then shown to be equivalent to the path integral formula of [MQR21].
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Figure 1: Illustration of the contours for m = 2: S1 is the union of the red contours and S2 is the union of the blue contours.
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2 Multipoint distribution formula for the KPZ fixed point

In this section, we explain in details the function Dh(z1, . . . , zm−1) appearing on the right-hand side of (1.6).

Proofs of the formula will be deferred to Section 4 and Section 5.

2.1 Fredholm determinant representation of Dh(z1, . . . , zm−1)

The function Dh is defined in the same way as its analog in [Liu22] for the narrow wedge initial condition.

The only difference is the part involving the initial condition h, which only appears in the top-left corner of

the integral kernel. Below, we introduce the Fredholm determinant representation of the function Dh.

Denote two regions of the complex plane

CL := {ζ ∈ C : Re(ζ) < 0} , and CR := {ζ ∈ C : Re(ζ) > 0} . (2.1)

Let Γout
m,L, . . ., Γout

2,L, Γ1,L, Γin
2,L, . . ., Γin

m,L be 2m − 1 “nested” contours in the region CL. They are all

unbounded contours from ∞e−2πi/3 to ∞e2πi/3. Moreover, they are located from the right (corresponding to

the superscript “out”) to the left (“in”). The superscripts “out” and “in” should be understood with respect

to the point −∞. Similarly, let Γout
m,R, . . ., Γ

out
2,R, Γ1,R, Γ

in
2,R, . . ., Γ

in
m,R be 2m− 1 “nested” contours from left

to right on the half plane CR. They are from ∞e−πi/5 to ∞eπi/5. Their superscripts “out” and “in” could

be understood with respect to the point +∞. Note that the angles for the left contours and right contours

are chosen differently. The choice of the angles guarantees super-exponential decay of the kernel along the

contours even if τi = τi+1 for some i. See [Liu22, LZ25] for more discussions on the choices of the angles.

See Figure 1 for an illustration of the contours.

We define

Γℓ,L := Γout
ℓ,L ∪ Γin

ℓ,L, Γℓ,R := Γout
ℓ,R ∪ Γin

ℓ,R, ℓ = 2, . . . ,m,

and

S1 := Γ1,L ∪ Γ2,R ∪ · · · ∪

{
Γm,L, if m is odd,

Γm,R, if m is even,
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and

S2 := Γ1,R ∪ Γ2,L ∪ · · · ∪

{
Γm,R, if m is odd,

Γm,L, if m is even.

We introduce a measure on these contours. Let

dµ(ζ) = dµz(ζ) :=



−zℓ−1

1− zℓ−1

dζ

2πi
, ζ ∈ Γout

ℓ,L ∪ Γout
ℓ,R, ℓ = 2, . . . ,m,

1

1− zℓ−1

dζ

2πi
, ζ ∈ Γin

ℓ,L ∪ Γin
ℓ,R, ℓ = 2, . . . ,m,

dζ

2πi
, ζ ∈ Γ1,L ∪ Γ1,R.

(2.2)

Let Q1 and Q2 be as follows:,

Q1(j) :=


1− zj , if j is odd and j < m,

1− 1

zj−1
, if j is even,

1, if j = m is odd,

Q2(j) :=


1− zj , if j is even and j < m,

1− 1

zj−1
, if j is odd and j > 1,

1, if j = m is even, or j = 1.

(2.3)

Definition 2.1. We define

Dh(z1, . . . , zm−1) = det (I−K1Kh) ,

where the operators

K1 : L2(S2,dµ) → L2(S1,dµ), Kh : L2(S1,dµ) → L2(S2,dµ)

are defined by their kernels

K1(ζ, ζ
′) :=

(
δi(j) + δi(j + (−1)i)

) f̂i(ζ)

ζ − ζ ′
Q1(j) (2.4)

and

Kh(ζ
′, ζ) :=

{(
δj(i) + δj(i− (−1)j)

) f̂j(ζ
′)

ζ−ζ′ Q2(i), i ≥ 2,

δj(1)̂f1(ζ
′)χh(ζ

′, ζ), i = 1,
(2.5)

for any ζ ∈ (Γi,L ∪ Γi,R) ∩ S1 and ζ ′ ∈ (Γj,L ∪ Γj,R) ∩ S2 with 1 ≤ i, j ≤ m. Here the function

f̂i(ζ) :=


fi(ζ), Re(ζ) < 0,

1

fi(ζ)
, Re(ζ) > 0,

(2.6)

with

fi(ζ) :=

{
e−

1
3 (τi−τi−1)ζ

3+(αi−αi−1)ζ
2+(βi−βi−1)ζ , i = 2, . . . ,m,

e−
1
3 τ1ζ

3+α1ζ
2+β1ζ , i = 1.

(2.7)

The kernel χh(ζ
′, ζ) is defined in Section 2.1.1, see Definition 2.2.

2.1.1 The characteristic function χh

The dependency on the initial condition of the entire formula is through the function χh defined on CR×CL.

Recall that we always use ξ and η to denote a variable on the Γ-contours on CL and CR respectively

throughout the paper. Note that χh is a function on ((Γ1,L ∪Γ1,R)∩S2)× ((Γ1,L ∪Γ1,R)∩S1) = Γ1,R×Γ1,L.

So we will use the notation χh(η, ξ) in the paper. The function χh is defined using a Brownian motion hitting

expectation as follows:
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Definition 2.2. Let B(t) be a two-sided Brownian motion with diffusivity constant 2. Let h ∈ UCc and τ±
be the hitting time of B to the hypograph of the positive (respectively, negative) part of h, i.e.,

τ+ := inf{α ≥ 0 : B(α) ≤ h(α)}, τ− := sup{α ≤ 0 : B(α) ≤ h(α)}. (2.8)

Then for any ξ ∈ CL and η ∈ CR, we define

χh(η, ξ) :=

∫
R
ds e+sη · EB(0)=s

[
exp

(
−τ+ξ

2 −B(τ+)ξ
)
1τ+<∞

]
+

∫
R
ds e−sξ · EB(0)=s

[
exp

(
τ−η

2 +B(τ−)η
)
1τ−>−∞

]
−
∫
R
dsEB(0)=s

[
exp

(
−τ+ξ

2 −B(τ+)ξ
)
1τ+<∞

]
· EB(0)=s

[
exp

(
τ−η

2 +B(τ−)η
)
1τ−>−∞

]
.

(2.9)

We remark that when h(α) = −∞1α ̸=0 is the narrow wedge initial condition, the above characteristic

function can be evaluated as χh(η, ξ) = 1
η−ξ , which matches the corresponding function in [Liu22] for the

narrow wedge initial condition.

Proposition 2.3. For h ∈ UCc, the function χh(η, ξ) is well-defined and analytic for ζ ∈ CL and η ∈ CR.

Moreover, for any L > 0 and β ∈ R such that supp(h) ⊂ [−L,L] and maxα∈R h(α) ≤ β, we have

|χh(η, ξ)| ≤ e(β+1)Re(η−ξ)+2L(|ξ|2+|η|2) ·
(

2

Re(η)
+

2

Re(−ξ)
+ 8L+

25/2L3/2

√
π

)
. (2.10)

Proof. Assume supp(h) ⊂ [−L,L] and maxα∈R h(α) ≤ β. We will show that the integrals on the right-hand

side of (2.9) are absolutely convergent and uniformly bounded by the right-hand side of (2.10). Therefore

χh is well defined and analytic on CR × CL.

We consider the first integral on the right-hand side of (2.9). Note that 1τ+<∞ = 1τ+≤L, and Re(−τ+ξ
2−

B(τ+)ξ) is bounded by L|ξ2|+ βRe(−ξ) when τ+ ≤ L. These facts imply∫
R
ds |e+sη| · EB(0)=s

[
| exp

(
−τ+ξ

2 −B(τ+)ξ
)
|1τ+<∞

]
≤ eL|ξ2|−βRe(ξ)

∫
R
ds esRe(η) · PB(0)=s(τ+ ≤ L)

≤ eL|ξ2|−βRe(ξ)

∫
R
ds esRe(η) · PB(0)=s(σ+ ≤ L),

(2.11)

where we used the following fact that τ+ ≥ σ+ with σ+ being the following new stopping time

σ+ := inf{α ≥ 0 : B(α) ≤ β}.

Note that the distribution of σ+ can be computed using the reflection principle, see, e.g., [Dur19, (7.4.4)].

When s ≥ β + 1, we can estimate

PB(0)=s(σ+ ≤ L) = 2PB(0)=s (B(L) ≤ β)

=
1√
πL

∫ β

−∞
e−

(y−s)2

4L dy =
1√
πL

e−
(β−s)2

4L

∫ 0

−∞
e−

(β−s)z
2L − z2

4L dz

≤ 1√
πL

e−
(β−s)2

4L

∫ 0

−∞
e−

(β−s)z
2L dz =

2
√
L√

π(s− β)
e−

(β−s)2

4L

≤ 2
√
L√
π

e−
(β−s)2

4L .

(2.12)
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Therefore, ∫
R
ds esRe(η) · PB(0)=s(σ+ ≤ L) ≤

∫ β+1

−∞
ds esRe(η) +

2
√
L√
π

∫ ∞

β+1

ds esRe(η)− (β−s)2

4L

≤ e(β+1)Re(η)

Re(η)
+ 4LeL(Re(η))2+βRe(η).

(2.13)

By inserting this bound to (2.11) and noting that (Re(η))2 ≤ |η2|, we obtain∫
R
ds |e+sη| ·EB(0)=s

[
| exp

(
−τ+ξ

2 −B(τ+)ξ
)
|1τ+<∞

]
≤ e(β+1)Re(η−ξ)+L(|ξ|2+|η|2) ·

(
4L+

1

Re(η)

)
. (2.14)

The second integral on the right-hand side of (2.9) can be handled similarly. We get∫
R
ds |e−sξ| · EB(0)=s

[
| exp

(
τ−η

2 +B(τ−)η
)
|1τ−>−∞

]
≤ e(β+1)Re(η−ξ)+L(|ξ|2+|η|2) ·

(
4L+

1

Re(−ξ)

)
.

(2.15)

For the last integral, we need to slightly modify the estimate. We need a different estimate of the integral

when s ≤ β + 1. We still have τ+ ≤ L when τ+ < ∞, and τ− ≥ −L when τ− > −∞. Also note that

B(τ+) ≤ maxt∈[0,L] B(t) and B(τ−) ≤ maxt∈[−L,0] B(t). Thus we have∫ β+1

−∞
dsEB(0)=s

[
| exp

(
−τ+ξ

2 −B(τ+)ξ
)
|1τ+<∞

]
· EB(0)=s

[
| exp

(
τ−η

2 +B(τ−)η
)
|1τ−>−∞

]
≤ eL(|ξ2|+|η2|)

∫ β+1

−∞
dsEB(0)=s

[
eRe(−ξ)maxt∈[0,L] B(t)

]
· EB(0)=s

[
eRe(η)maxt∈[−L,0] B(t)

]
= eL(|ξ2|+|η2|)

∫ β+1

−∞
ds esRe(η−ξ) · EB(0)=0

[
eRe(−ξ)maxt∈[0,L] B(t)

]
· EB(0)=0

[
eRe(η)maxt∈[−L,0] B(t)

]
= eL(|ξ2|+|η2|) · e

(β+1)Re(η−ξ)

Re(η − ξ)
·
(

1√
πL

∫ ∞

0

e−
x2

4L+Re(−ξ)x dx

)
·
(

1√
πL

∫ ∞

0

e−
x2

4L+Re(η)x dx

)
≤ eL(|ξ2|+|η2|) · e

(β+1)Re(η−ξ)

Re(η − ξ)
· eL(Re(−ξ))2+L(Re(η))2

≤ e2L(|ξ2|+|η2|)+(β+1)Re(η−ξ) ·
(

1

Re(−ξ)
+

1

Re(η)

)
,

(2.16)

where we used the fact that maxt∈[0,L] B(t) and maxt∈[−L,0] B(t) have the same distribution as |B(L)| when
B(0) = 0. When s > β + 1, we use the following bound which is similar to (2.11) and (2.13),∫ ∞

β+1

dsEB(0)=s

[
| exp

(
−τ+ξ

2 −B(τ+)ξ
)
|1τ+<∞

]
· EB(0)=s

[
| exp

(
τ−η

2 +B(τ−)η
)
|1τ−>−∞

]
≤ eβRe(η−ξ)+L(|ξ2|+|η|2)

∫ ∞

β+1

dsPB(0)=s(σ+ ≤ L)PB(0)=s(σ− ≥ −L)

≤ eβRe(η−ξ)+L(|ξ2|+|η|2) · 4L
π

∫ ∞

β+1

ds e−
(β−s)2

2L

≤ eβRe(η−ξ)+L(|ξ2|+|η|2) · 2
5/2L3/2

√
π

,

(2.17)

where σ− := sup{α ≤ 0 : B(α) ≤ β} is a stopping time which has the same law as −σ+. By combining all

the bounds (2.14), (2.15), (2.16) and (2.17), we prove the desired bound (2.10).
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For convenience, we were using the origin 0 as the starting point of the Brownian motions in the hitting

expectation formula. The next proposition shows that this is not necessary, and one can start with any point

on the real line R and get the same characteristic function χh.

Proposition 2.4. One can change the starting point of the Brownian motions in the definition of the

function χh defined in (2.9). More precisely, for any ω ∈ R one has

χh(η, ξ) = eωη2

∫
R
ds e+sη · EB(ω)=s

[
exp

(
−τ+ξ

2 −B(τ+)ξ
)
1τ+<∞

]
+ e−ωξ2

∫
R
ds e−sξ · EB(ω)=s

[
exp

(
τ−η

2 +B(τ−)η
)
1τ−>−∞

]
−
∫
R
dsEB(ω)=s

[
exp

(
τ−η

2 +B(τ−)η − τ+ξ
2 −B(τ+)ξ

)
1|τ±|<∞

]
,

(2.18)

where the hitting times τ± are now defined as

τ+ := inf{α ≥ ω : B(α) ≤ h(α)}, τ− := sup{α ≤ ω : B(α) ≤ h(α)}. (2.19)

In particular if supp(h) ⊂ [−L,L] for some L > 0, then

χh(η, ξ) = e−Lη2

∫
R
ds esη · EB(−L)=s

[
exp

(
−τ+ξ

2 −B(τ+)ξ
)
1τ+≤L

]
. (2.20)

The proof of Proposition 2.4 will be given in Section 5.2. We point out that it is purely a result about

the Brownian motion, but we are not able to find it in the literature.

2.2 An equivalent series expansion formula

Due to the block diagonal structure of the kernel K1 and Kh, the Fredholm determinant Dh(z1, . . . , zm−1)

admits a series expansion, which we will be working with more frequently in the subsequent sections. To intro-

duce the formula, we first introduce a few notation. Given W = (w1, . . . , wn) ∈ Cn and W ′ = (w′
1, . . . , w

′
m) ∈

Cm, we denote

W ⊔W ′ := (w1, . . . , wn, w
′
1, . . . , w

′
m) ∈ Cm+n. (2.21)

Assume in addition that n = m and wi ̸= w′
j for all 1 ≤ i, j ≤ n. We denote

C(W ;W ′) := det

[
1

wi − w′
j

]
1≤i,j≤n

= (−1)
n(n−1)

2

∏
1≤i<j≤n(wj − wi)(w

′
j − w′

i)∏
1≤i,j≤n(wi − w′

j)
, (2.22)

which is the usual Cauchy determinant. The Cauchy determinant C(W ⊔W ′; Ŵ ⊔Ŵ ′) is defined in the same

way with the combined variables W ⊔W ′ and another set of variables Ŵ ⊔ Ŵ ′ with the same dimension as

W ⊔W ′.

Proposition 2.5 (Series expansion for Dh(z1, . . . , zm−1)). Alternatively, we have

Dh(z1, . . . , zm−1) =
∑
nℓ≥0,
1≤ℓ≤m

1

(n1! · · ·nm!)2
D

(n)
h (z1, . . . , zm−1), (2.23)

where n = (n1, . . . , nm) ∈ (Z≥0)
m, and

D
(n)
h (z1, . . . , zm−1) = D

(n)
h (z1, . . . , zm−1; (α1, τ1, β1), . . . , (αm, τm, βm))

=

m−1∏
ℓ=1

(1− zℓ)
nℓ
(
1− z−1

ℓ

)nℓ+1

(
m∏
ℓ=1

nℓ∏
iℓ=1

∫
Γℓ,L

dµz(ξ
(ℓ)
iℓ

)

∫
Γℓ,R

dµz(η
(ℓ)
iℓ

)

)
m∏
ℓ=1

nℓ∏
iℓ=1

fℓ(ξ
(ℓ)
iℓ

)

fℓ(η
(ℓ)
iℓ

)

· det
[
χh(η

(1)
i , ξ

(1)
j )
]
1≤i,j≤n1

·
m−1∏
ℓ=1

C
(
ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)

)
· C(ξ(m);η(m)),

(2.24)
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with ξ(ℓ) = (ξ
(ℓ)
1 , . . . , ξ

(ℓ)
nℓ ) and η(ℓ) = (η

(ℓ)
1 , . . . , η

(ℓ)
nℓ ), for 1 ≤ ℓ ≤ m. Here

fℓ(w) := e−
1
3 (τℓ−τℓ−1)w

3+(αℓ−αℓ−1)w
2+(βℓ−βℓ−1)w,

for 1 ≤ ℓ ≤ m, with the convention that τ0 = α0 = β0 := 0.

We remark that (2.24) looks slightly different from the version in [Liu22, (2.27)] because we use the func-

tion C instead of the Vandermonde type products ∆. The formula (2.24) also appears in [LZ25, Proposition

3.1] when χh(η, ξ) = 1/(η − ξ) for the narrow wedge initial condition. The equivalence of Proposition 2.5

and Theorem 1.2 follows from [Liu22, Proposition 2.9], see also [BL19, Lemma 4.8] and [BL21, Lemma 5.6].

3 Multipoint distribution formulas for TASEP

Our formulas for the KPZ fixed point are obtained by taking 1 : 2 : 3 scaling limit of the analogous formulas

for the totally asymmetric simple exclusion process, which we discuss in this section. The totally asymmetric

simple exclusion process (TASEP) on Z is a continuous-time Markov chain Xt = (xi(t))i≥1, consisting of

particles on Z performing independent Poisson random walks subject to the exclusion rule. Each particle

tries to jump to its right neighbor after an independent exponential waiting time with rate 1 but the jump

is forbidden if the target site is occupied. The exponential clock is reset after each jump attempt. We will

assume there is a right-most particle with index 1 and label the particles from right to left, so the i-th

particle at time t has location xi(t) and

· · · < x3(t) < x2(t) < x1(t).

The initial configuration is denoted by Y = (yi)i≥1 := (xi(0))i≥1. Our key observation, following the work

[Liu22], is that the initial condition Y can be encoded in a two-variable function chY (v, u), defined as an

expectation involving random walk hitting problems. We begin by introducing this key object.

3.1 Characteristic function of the initial condition

In this subsection, we discuss how to characterize the initial condition in the TASEP formulas, and provide

a probabilistic representation of the characterization.

One feature of the TASEP is that the distribution of any finite set of the rightmost particles, up to

a fixed label N , is independent of the state of particles to their left. Conversely, a TASEP model with

N particles can be embedded into a TASEP model with infinitely many particles, where the N rightmost

particles correspond to the N -particle system, and the states of all other particles are arbitrary. This feature

will be used when we characterize the initial condition of TASEP with finitely many particles.

Consider the following two simply connected regions of C:

ΩL :=

{
w ∈ C : |w + 1| < 1

2

}
, ΩR :=

{
w ∈ C : |w| < 1

2

}
. (3.1)

The following characterization of the initial condition comes from [Liu22], see Proposition 2.13 and the

subsequent discussion in that paper for further details. It claimed that the initial condition is encoded in

any function satisfying two conditions in the multipoint distribution formula of TASEP. We summarize these

two conditions and introduce the concept of characteristic function below.

Definition 3.1. Let Y = (y1 > y2 > · · · > yN ) where N is a fixed integer. We say chY is a characteristic

function of Y , if it satisfies the following two conditions:
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1. chY : ΩR × (ΩL\{−1}) → C is analytic.

2. For any 1 ≤ i ≤ N , one has∮
0

v−i(v + 1)yi+i · chY (v, u)
dv

2πi
= −u−i(u+ 1)yi+i. (3.2)

Remark 3.2. As pointed out in Proposition 2.13 of [Liu22] and the comments thereafter, for any given

Y , there are infinitely many characteristic functions. However, the law of the TASEP model such as the

multipoint distributions we are interested in here does not depend on the choice of chY . This non-uniqueness

comes from the nature of the TASEP model, as we discussed at the beginning of this subsection.

Remark 3.3. One could formally extend the concept of the characteristic “function” chY (v, u) to an infinite

system with particles labeled on Z+ and Y = (. . . , y3, y2, y1) by defining chY (v, u) to satisfy (3.2) for all

i ∈ Z+. We could extend it even further to a TASEP with particle labeled on Z, while the first condition is

absorbed into the second condition by allowing i ∈ Z in (3.2). The issue for these extensions is that chY is

not necessarily well-defined as a function because of the convergence issue.

In [Liu22], the author derived a characteristic function expressed in terms of symmetric functions for

any Y , which is well-suited for asymptotic analysis under the step or flat initial condition. As a result, the

author obtained the multipoint distribution of the KPZ fixed point for both the narrow-wedge and flat initial

conditions. However, the characteristic function presented in [Liu22] is not suitable for asymptotic analysis

with general initial conditions. One main contribution of this paper is the following characteristic function

chY defined by an expectation involving random walk hitting problems, which turns out to be suitable for

asymptotic analysis. The idea is heavily inspired by the seminal work [MQR21]: we compared the two

formulas of [MQR21] and [Liu22] and guessed the identity. We remark that a similar hitting expectation

kernel expression has also been derived in [BLSZ23], which generalized the approach of [MQR21]. Another

interesting connection is that the left-hand side of the equation (3.7) in our proof has a similar structure

with an expression of the G(z1, z2) function in [BLSZ23, Proposition 4.6], although they are still different1.

Theorem 3.4. Let (Gk)k≥0 be a geometric random walk with transition probability given by

P(Gk+1 = x | Gk = y) :=
1

2y−x
1x<y, (3.3)

and τ be the hitting time of G to the strict epigraph of Y , namely

τ := min{m ≥ 0 : Gm > ym+1}. (3.4)

Then the following function chY is a characteristic function of Y

chY (v, u) :=
∑
z∈Z

(2u+ 2)z · EG0=z

[
2

(2v + 2)Gτ+1
·
(

−v

v + 1

)τ

1τ<N

]
. (3.5)

We remark that for the narrow wedge initial condition yi = −i, 1 ≤ i ≤ N , the characteristic function

defined above is equal to chY (v, u) =
∑

z≥0(2u + 2)z · 2
(2v+2)z+1 = 1

v−u , which matches the corresponding

characteristic function in [Liu22] for the step initial condition.

Proof. First we check the analyticity of chY (v, u) in ΩR × (ΩL\{−1}). Recall that v ∈ ΩR =: {|w| < 1/2}
and u ∈ ΩL =: {|w + 1| < 1/2}. Note that the summand on the right-hand side of (3.5) is 0 when z ≤ yN ,

1The left-hand side of (3.7) has two factors 2z and 2−Gτ which the G(z1, z2) function in [BLSZ23] does not have. This results

in the different meanings of these two quantities: (3.7) is a binomial coefficient, while G(z1, z2) in [BLSZ23] is a probability.

11



since the random walk will stay below the epigraph of Y up to time N . Moreover, τ = 0 and Gτ = z when

z > y1. Therefore, we have

chY (v, u) =

∞∑
z≥y1+1

(2u+ 2)z
2

(2v + 2)z+1
+

y1∑
z=yN+1

(2u+ 2)z · EG0=z

[
2

(2v + 2)Gτ+1
·
(

−v

v + 1

)τ

1τ<N

]

=

(
u+ 1

v + 1

)y1+1

· 1

v − u
+

y1∑
z=yN+1

(2u+ 2)z · EG0=z

[
2

(2v + 2)Gτ+1
·
(

−v

v + 1

)τ

1τ<N

]
,

(3.6)

where we used the fact that |u + 1| < |v + 1| to simplify the first summation. Note that the right-hand

side of (3.6) is a sum of finitely many terms each of which is analytic in ΩR × (ΩL\{−1}). This proves the

analyticity of chY (v, u) in this domain.

Next, we verify that the right-hand side of (3.5) satisfies (3.2) for all 1 ≤ i ≤ N . A Taylor expansion of

u−i at −1 gives

−u−i(u+ 1)yi+i = (−1)i+1
∞∑
j=0

(
i+ j − 1

j

)
(u+ 1)yi+i+j ,

where the series converges absolutely for u ∈ ΩL. From (3.6) we have seen that the right-hand side of (3.5)

converges absolutely as a Laurent series in u for u ∈ ΩL\{−1}. Hence, it is sufficient to show that∮
0

dv

2πi
v−i(v + 1)yi+i · 2z

v + 1
· EG0=z

[
1

(2v + 2)Gτ

(
−v

v + 1

)τ

1τ<N

]
= (−1)i+11z≥yi+i

(
z − yi − 1

i− 1

)
.

By interchanging the contour integration and the expectation (which is justified by (3.6)), the above is

equivalent to

2z · EG0=z

[∮
0

dv

2πi

(v + 1)yi+i−1−Gτ−τ

(−v)i−τ

1

2Gτ
1τ<N

]
= −1z≥yi+i

(
z − yi − 1

i− 1

)
, (3.7)

which is, by using the assumption that i ≤ N and the fact that the v-integral vanishes when i ≥ τ ,

2z · EG0=z

[
−
(
Gτ − yi − 1

i− τ − 1

)
1

2Gτ
1τ<i

]
= −1z≥yi+i

(
z − yi − 1

i− 1

)
. (3.8)

Below we use induction to prove (3.8) for any 1 ≤ i ≤ N .

When i = 1, the expectation on the left-hand side of (3.8) is nonzero if and only if τ = 0, which is

equivalent to z ≥ y1 + 1. Moreover, when τ = 0, Gτ = G0 = z. Thus (3.8) holds.

Assuming the identity is true for i− 1, we want to show it holds for i.

Note that when z ≥ y1 + 1, we have τ = 0 and both sides are equal.

When z ≤ y1, we define Ĝk = Gk+1 and ŷk = yk+1 for k = 0, 1, . . .. Then we have, by induction,

2ẑ · EĜ0=ẑ

[
−
(
Ĝτ̂ − ŷi−1 − 1

i− τ̂ − 2

)
1

2Ĝτ̂

1τ̂<i−1

]
= −1ẑ≥ŷi−1+i−1

(
ẑ − ŷi−1 − 1

i− 2

)
,

here τ̂ := τ − 1. Thus, we have

z−1∑
ẑ=−∞

1

2z−ẑ
· EĜ0=ẑ

[
−
(
Ĝτ̂ − ŷi−1 − 1

i− τ̂ − 2

)
1

2Ĝτ̂

1τ̂<i−1

]
= −

z−1∑
ẑ=−∞

1

2z
1ẑ≥ŷi−1+i−1

(
ẑ − ŷi−1 − 1

i− 2

)
. (3.9)

By using the Markov property for the left-hand side of (3.9), we have

EG0=z

[
−
(
Gτ − yi − 1

i− τ − 1

)
1

2Gτ
1τ<i

]
= −1z≥yi+i

2z

z−1∑
ẑ=yi+i−1

(
ẑ − yi − 1

i− 2

)
= −1z≥yi+i

2z

(
z − yi − 1

i− 1

)
,
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where we used the identity
∑n

m=k

(
m−1
k−1

)
=
(
n
k

)
in the last step. This finishes the induction and the proof.

3.2 Multipoint distribution of TASEP with general initial configurations

As we discussed in the previous subsection, the multipoint distribution of TASEP only depends on a finite

number of rightmost particles. Hence, in this subsection, we consider the TASEP model with finitely many

particles.

The following theorem is essentially [Liu22, Theorem 2.1], where the integrandDY (z1, . . . , zm−1) is defined

by a Fredholm determinant formula or a series expansion formula and the initial condition information is

encoded in a characteristic function of Y . It was proved that the choice of characteristic functions does not

affect the value of the DY function. We will present the formula with a new characteristic function chY as

in (3.5) in Theorem 3.4 that is suitable for asymptotic analysis.

Theorem 3.5. Given Y = (yN , . . . , y2, y1) ∈ ZN satisfying yN < · · · < y1, where N is a positive integer.

Consider TASEP with initial particle locations X0 = Y . Let (k1, t1), . . . , (km, tm) be m distinct points in

{1, . . . , N} × R+ satisfying t1 ≤ t2 ≤ · · · ≤ tm. Then for any integers a1, . . . , am,

PY

(
m⋂
ℓ=1

{xkℓ
(tℓ) ≥ aℓ}

)
=

∮
0

dz1
2πiz1(1− z1)

· · ·
∮
0

dzm−1

2πizm−1(1− zm−1)
DY (z1, . . . , zm−1), (3.10)

where PY denotes the probability given X(0) = Y . The function DY (z1, . . . , zm−1) is defined as a Fredholm

determinant in Definition 3.6, or equivalently as a series in Definition 3.7.

3.2.1 Fredholm determinant representation of DY (z1, . . . , zm−1)

The definition of DY (z1, . . . , zm−1) is very similar to its limiting counterpart Dh(z1, . . . , zm−1) defined in

Section 2.1 and 2.2, either as a Fredholm determinant det(I−K1KY ) or as a Fredholm series expansion. We

will only use the series expansion formula in this paper, but we present both formulas here for completeness

and possible later uses.

3.2.1.1 Spaces of the operators

We will define the operators on two specific spaces of nested contours with complex measures depending on

z = (z1, . . . , zm−1), where zℓ ̸= 1 for each 1 ≤ ℓ ≤ m − 1. Recall the definition of the two regions ΩL and

ΩR from (3.1).

Suppose Σout
m,L, . . . ,Σ

out
2,L, Σ1,L, Σ

in
2,L, . . . ,Σ

in
m,L are 2m− 1 nested simple closed contours, from outside to

inside, in ΩL enclosing the point −1. Similarly, Σout
m,R, . . . ,Σ

out
2,R, Σ1,R, Σ

in
2,R, . . . ,Σ

in
m,R are 2m − 1 nested

simple closed contours, from outside to inside, in ΩR enclosing the point 0. See Figure 2 for an illustration

of the contours. These contours are all counterclockwise oriented.

We define

Σℓ,L := Σout
ℓ,L ∪ Σin

ℓ,L, Σℓ,R := Σout
ℓ,R ∪ Σin

ℓ,R, ℓ = 2, . . . ,m, (3.11)

and

S1 := Σ1,L ∪ Σ2,R ∪ · · · ∪

{
Σm,L, if m is odd,

Σm,R, if m is even,

and

S2 := Σ1,R ∪ Σ2,L ∪ · · · ∪

{
Σm,R, if m is odd,

Σm,L, if m is even.
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R

iR

− 1
2

0−1

ΩL ΩR

Σout
2,R

Σ1,R

Σin
2,R

Σout
2,L

Σ1,L

Σin
2,L

Figure 2: Illustration of the contours for m = 2: The regions ΩL and ΩR are the interior of the two dashed circles, from left to

right; the three contours around −1 from outside to inside are Σout
2,L,Σ1,L,Σ

in
2,L respectively; the three contours around 0 from

outside to inside are Σout
2,R,Σ1,R,Σin

2,R respectively. S1 is the union of the red contours, and S2 is the union of the blue contours.

We introduce a measure on these contours in the same way as in (2.2). Let

dµ(w) = dµz(w) :=



−zℓ−1

1− zℓ−1

dw

2πi
, w ∈ Σout

ℓ,L ∪ Σout
ℓ,R, ℓ = 2, . . . ,m,

1

1− zℓ−1

dw

2πi
, w ∈ Σin

ℓ,L ∪ Σin
ℓ,R, ℓ = 2, . . . ,m,

dw

2πi
, w ∈ Σ1,L ∪ Σ1,R.

3.2.1.2 Operators K1 and KY

Now we introduce the operators K1 and KY to define DY (z1, . . . , zm−1) in Theorem 3.5. We assume that

z = (z1, . . . , zm−1) is the same as in Section 3.2.1.1. Let

Q1(j) :=


1− zj , if j is odd and j < m,

1− 1

zj−1
, if j is even,

1, if j = m is odd,

Q2(j) :=


1− zj , if j is even and j < m,

1− 1

zj−1
, if j is odd and j > 1,

1, if j = m is even, or j = 1.

Definition 3.6. We define

DY (z1, . . . , zm−1) = det (I−K1KY ) ,

where the two operators

K1 : L2(S2,dµ) → L2(S1,dµ), KY : L2(S1,dµ) → L2(S2,dµ)

are defined by their kernels

K1(w,w
′) :=

(
δi(j) + δi(j + (−1)i)

) f̂i(w)

w − w′Q1(j), (3.12)

and

KY (w
′, w) :=


(
δj(i) + δj(i− (−1)j)

) f̂j(w
′)

w′ − w
Q2(i), i ≥ 2,

δj(1)f̂j(w
′)chY (w

′;w), i = 1,

(3.13)
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for any w ∈ (Σi,L ∪Σi,R) ∩ S1 and w′ ∈ (Σj,L ∪Σj,R) ∩ S2 with 1 ≤ i, j ≤ m. Here chY is the characteristic

function given by (3.5). The function

f̂i(w) :=


fi(w), w ∈ ΩL \ {−1},

1

fi(w)
, w ∈ ΩR \ {0},

with

fi(w) :=

{
wki−ki−1(w + 1)−(ai−ai−1)−(ki−ki−1)e(ti−ti−1)w, i = 2, . . . ,m,

wk1(w + 1)−a1−k1et1w, i = 1,
(3.14)

for all w ∈ (ΩL \ {−1}) ∪ (ΩR \ {0}).

3.2.2 Series expansion formula for DY (z1, . . . , zm−1)

We will be working with the following series expansion formulas, which is equivalent to the Fredholm determi-

nant formula in the previous section, by [Liu22, Proposition 2.9]. We use the same notation and conventions

as in Section 2.2 for the Cauchy determinants.

Definition 3.7 (Alternative definition of DY ). We have an alternative definition of DY below

DY (z1, . . . , zm−1) :=
∑

n∈(Z≥0)m

1

(n!)2
D(n)

Y (z1, . . . , zm−1), (3.15)

with n! = n1! · · ·nm! for n = (n1, . . . , nm). Here

D(n)
Y (z1, . . . , zm−1) = D(n)

Y (z1, . . . , zm−1; (x1, t1, a1), . . . , (xm, tm, am))

=

m−1∏
ℓ=1

(1− zℓ)
nℓ
(
1− z−1

ℓ

)nℓ+1

(
m∏
ℓ=1

nℓ∏
iℓ=1

∫
Σℓ,L

dµz(u
(ℓ)
iℓ

)

∫
Σℓ,R

dµz(v
(ℓ)
iℓ

)

)
m∏
ℓ=1

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)

· det
[
chY (v

(1)
i , u

(1)
j )
]
1≤i,j≤n1

·
m−1∏
ℓ=1

C
(
U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)

)
· C(U (m);V (m)),

(3.16)

with U (ℓ) = (u
(ℓ)
1 , . . . , u

(ℓ)
nℓ ) and V (ℓ) = (v

(ℓ)
1 , . . . , v

(ℓ)
nℓ ), and the functions fℓ defined in (3.14) for 1 ≤ ℓ ≤ m.

4 Convergence of the TASEP formula

In this section, we will take the proper scaling limit of the TASEP formulas (see Theorem 3.5), to get the

corresponding KPZ fixed point formulas. We start with the setup for the proper rescaling.

4.1 TASEP height function and 1 : 2 : 3 rescaling

The TASEP particle configuration can be encoded into the corresponding height function H(x, t), defined

as the unique function R× R+ → R satisfying the following conditions:

1. H(0, 0) = 0,

2. H(x+ 1, t) = H(x, t) + η̂(x, t) for all x ∈ Z, where

η̂(x, t) =

{
1 if there is a particle at site x at time t,

−1 if there is no particle at site x at time t,
(4.1)
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3. H(·, t) is piecewise linear with constant slopes between consecutive integers.

The dynamics of the height function is as follows. Each local maximum of the height function turns into

a local minimum after an independent exponential time with rate 1. After each flip of max to min, the

height at the flip decreases by 2 while the height at the other integer points remain unchanged. The values

at general x ∈ R are then determined by linear interpolations. Note that here we follow the convention in

[MQR21] where the height function decreases in time, instead of increasing as in some other literature. More

explicitly, for the TASEP Markov chain Xt = (xi(t))i≥1 we define its height function as

H(x, t) := −2
(
X−1

t (x− 1)−X−1
0 (−1)

)
− x, for x ∈ Z, (4.2)

where

X−1
t (u) := inf{k ∈ Z : xk(t) ≤ u}.

In particular, the initial height function h corresponding to the initial particle configuration Y is

h(x) := H(x, 0) = −2
(
Y −1(x− 1)− Y −1(−1)

)
− x, for x ∈ Z.

We will use Y (h) or h(Y ) to represent the initial particle configuration Y corresponding to the initial

height function h and vice versa. Under this identification we can express the joint distribution of particle

configurations using the height functions and vice versa, for example

PY

(
m⋂
ℓ=1

{xkℓ
(tℓ) ≥ aℓ}

)
= Ph(Y )

(
m⋂
ℓ=1

{H(aℓ, tℓ) ≤ −aℓ − 2kℓ}

)
. (4.3)

Now we introduce the proper rescaling for the TASEP height function so that it will converge to the KPZ

fixed point. For ε > 0, we define the rescaled TASEP height function Hε(α, τ) for (α, τ) ∈ R×R+ as follows:

Hε(α, τ) := ε
1
2

(
H(2ε−1α, 2ε−

3
2 τ) + ε−

3
2 τ
)
. (4.4)

In particular Hε(α, 0) = ε
1
2 ·H(2ε−1α, 0) =: hε(α). It was shown in [MQR21, Theorem 3.13] that if hε → h in

UC as ε → 0, then for any positive integerm one has (Hε(·, τ1; hε), . . . ,Hε(·, τm; hε)) converges in distribution

to (H(·, τ1; h), . . . ,H(·, τm; h)) in the topology of UCm, where H(·, ·; h) is the KPZ fixed point starting from

the initial condition h. This in particular implies

P

(
m⋂
ℓ=1

{H(αℓ, τℓ; h) ≤ βℓ}

)
= lim

ε→0
PY (hε)

(
m⋂
ℓ=1

{
x 1

2 ε
− 3

2 τℓ−ε−1αℓ− 1
2 ε

− 1
2 βℓ

(2ε−
3
2 τℓ) ≥ 2ε−1αℓ

})
. (4.5)

We will use (4.5) and Theorem 3.5 to prove Theorem 1.2. Our strategy is to first assume that the initial

condition h is a linear combination of finitely many narrow wedges and prove convergence of the TASEP

approximations for such initial conditions. Then we use the density of such initial conditions to extend (1.6)

to all h ∈ UCc.

4.2 Finitely many narrow wedges and approximations

Definition 4.1 (Multiple narrow wedges). Define the space of initial height functions consisting of finitely

many narrow wedges:

mNW := {h ∈ UC : h(ω) :=

M−1∑
k=0

θk1ω=ωk
−∞1ω/∈{ωk:0≤k≤M−1},M ∈ Z+, θk ∈ R, ω0 > · · · > ωM−1}. (4.6)

We will also be working with the following subspace of mNW consisting of normalized height functions:

mNW0 := {h ∈ mNW : ω0 = θ0 = 0}. (4.7)
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We start with proving Theorem 1.2 under the additional assumption that the initial condition h for the

KPZ fixed point is in mNW0, namely it takes the form

h(ω) :=

M−1∑
k=0

θk1ω=ωk
−∞1ω/∈{ωk:0≤k≤M−1}, (4.8)

where M ∈ Z+, 0 = ω0 > ω1 > · · · > ωM−1 and θ0 = 0. Note that if h(ω) =
∑

k θk1ω ̸=ωk
−∞1ω/∈{ωk:k} ∈

mNW, then ĥ(·) := h(·+ω0)− θ0 ∈ mNW0. By the invariance property of the KPZ fixed point and also the

structure of χh one can extend the formula to h ∈ mNW from mNW0, see Section 5.3 for explanations.

We approximate h ∈ mNW0 by the following sequence of height functions {hε}ε>0:

hε(ω) := ε1/2hε(2ε−1ω), (4.9)

where hε is piecewise linear with slope ±1 such that hε(2ε−1ωk) = ε−1/2θk+O(1) for each 0 ≤ k ≤ M−1. In

terms of TASEP particle configurations, hε corresponds to setting the occupation functions η̂(x, 0) defined

in (4.1) as:

η̂(x, 0) :=

{
+1, if ε−1(ωk + ωk+1) + ε−

1
2
θk+1−θk

2 ≤ x < 2ε−1ωk for some 0 ≤ k ≤ M − 1,

−1, if 2ε−1ωk ≤ x < ε−1(ωk−1 + ωk) + ε−
1
2
θk−θk−1

2 for some 0 ≤ k ≤ M − 1.
(4.10)

Roughly, we are putting densely packed particles between 2ε−1ωk and ε−1(ωk +ωk+1) + ε−
1
2
θk−θk+1

2 and no

particles between 2ε−1ωk and ε−1(ωk + ωk−1) + ε−
1
2
θk−1−θk

2 , for 0 ≤ k ≤ M − 1. Here ωM is understood as

−∞ and ω−1 is understood as +∞.

The following proposition implies Theorem 1.2 under the additional assumption that h ∈ mNW0.

Proposition 4.2. Given h ∈ mNW0. Let (hε)ε>0 be the approximating sequence of initial height functions

for TASEP defined as in (4.9) and (4.10). Given z1, . . . , zm ∈ C with |zi| = r < 1 for 1 ≤ i ≤ m − 1. To

lighten the notation we will suppress the dependency on ε at most places and write

DY ε(z1, . . . , zm−1) := DY (hε)(z1, . . . , zm−1;k
ε,aε, tε),

where DY (z1, . . . , zm−1) = DY (z1, . . . , zm−1;k,a, t) is defined in Section 3.2.1. Here we use boldface letters

to denote vectors, for example, k := (k1, . . . , km). Assume the parameters satisfy

kεℓ :=
1

2
ε−

3
2 τℓ − ε−1αℓ −

1

2
ε−

1
2 βℓ +O(1), aεℓ := 2ε−1αℓ +O(1), tεℓ := 2ε−

3
2 τℓ, for 1 ≤ ℓ ≤ m. (4.11)

Then we have

lim
ε→0

m−1∏
ℓ=1

∮
0

dzℓ
2πizℓ(1− zℓ)

DY ε(z1, . . . , zm−1) =

m−1∏
ℓ=1

∮
0

dzℓ
2πizℓ(1− zℓ)

Dh(z1, . . . , zm−1).

Proposition 4.2 is a consequence of the following two lemmas and the dominated convergence theorem.

Lemma 4.3. Let D(n)
Y ε and D

(n)
h be as in (3.16) and (2.24), where h is given by (4.8) and Y ε = Y (hε) is

described in (4.9). Then for each n ∈ (Z≥0)
m and (z1, . . . , zm−1) ∈ (D(0, 1))m−1, we have

lim
ε→0

D(n)
Y ε (z1, . . . , zm−1;k

ε,aε, tε) = D
(n)
h (z1, . . . , zm−1;α,β, τ ). (4.12)

Lemma 4.4. There exists constant C > 0 such that∣∣∣D(n)
Y ε (z1, . . . , zm−1;k

ε,aε, tε)
∣∣∣ ≤ m−1∏

ℓ=1

(1 + |zℓ+1|)2nℓ+1

|zℓ|nℓ+1 |1− zℓ|nℓ+1−nℓ
·

m∏
ℓ=1

nnℓ

ℓ · Cn1+···+nm , (4.13)

for any n = (n1, . . . , nm) ∈ (Z≥0)
m and (z1, . . . , zm−1) ∈ (D(0, 1))m−1.
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The remaining of this section is organized as follows: we will first prove a uniform bound for chY ε and

the pointwise convergence of chY ε to χh in Section 4.2.1. Then we will use these results to prove Lemma 4.3

in Section 4.3.1 and Lemma 4.4 in Section 4.3.2, these complete the proof of Proposition 4.2.

4.2.1 Pointwise convergence of the characteristic function

For the approximating sequence of height functions hε described in (4.10), we denote Y ε the corresponding

particle configurations for TASEP. It consists of exactly M clusters of densely packed particles. To lighten

the notations, we denote temporarily the indices of the rightmost particle of each cluster by t0, . . . , tM−1,

from right to left. We have

ti := −⌊ε−1ωi⌋ − ⌊1
2
ε−

1
2 θi⌋+ 1, yti := 2⌊ε−1ωi⌋, 0 ≤ i ≤ M − 1. (4.14)

Recall that we assume ω0 = θ0 = 0. Thus

t0 = 1, and yt0 = 0. (4.15)

The goal of this section is to analyze the asymptotic behaviors of the characteristic function chY ε(v, u).

We write

u = −1

2
+

1

2
ε

1
2 ξ, v = −1

2
+

1

2
ε

1
2 η. (4.16)

The main result of this section is summarized in the following proposition:

Proposition 4.5. Under the same assumption as in Proposition 4.2, we have

(a) For any ξ ∈ CL, η ∈ CR fixed,

lim
ε→0

1

2
ε

1
2 · chY ε

(
−1

2
+

1

2
ε

1
2 η,−1

2
+

1

2
ε

1
2 ξ

)
= χh(η, ξ). (4.17)

(b) Assume that ε > 0, and ξ ∈ CL, η ∈ CR satisfy 0 < |1 + ε
1
2 ξ| < 1. Then the following estimate holds∣∣∣∣12ε 1

2 · chY ε

(
−1

2
+

1

2
ε

1
2 η,−1

2
+

1

2
ε

1
2 ξ

)∣∣∣∣
≤ 1

Re(η)

(
1 + (M − 1)

|1− εη2|tM−1

|1 + ε
1
2 η|2tM−1+ytM−1+1

· |1 + ε
1
2 ξ|ytM−1

+tM−1

(2− |1 + ε
1
2 ξ|)tM−1−1

)
.

(4.18)

As a corollary, if we further assume that |ε 1
2 ξ| < 100−1 and |ε 1

2 η| < 100−1, then we have∣∣∣∣∣ε
1
2

2
chY ε

(
−1

2
+

ε
1
2

2
η,−1

2
+

ε
1
2

2
ξ

)∣∣∣∣∣ ≤ eC(|ξ|2+|η|2+|ξ|+|η|+1)

Re(η)
, (4.19)

where C is a constant that only depends on the parameters M and ωi, θi, 0 ≤ i ≤ M − 1.

Proof. We will prove part (b) first. Note that the geometric random walk moves strictly downwards, so it

can only go above the boundary at the beginning of each cluster, namely

P(τ /∈ {t0, . . . , tM−1}) = 0.
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Here τ is defined as in (3.4) and the indices t0, . . . , tM−1 are as in (4.14). Hence,

1

2
ε

1
2 · chY ε

(
−1

2
+

1

2
ε

1
2 η,−1

2
+

1

2
ε

1
2 ξ

)
= ε

1
2

∑
z∈Z

(1 + ε
1
2 ξ)z · EG0=z

[
(1 + ε

1
2 η)−Gτ−τ−1 · (1− ε

1
2 η)τ1τ≤maxℓ{tℓ}

]

= ε
1
2

M−1∑
k=0

∑
zi≤yti

0≤i≤k−1

∑
zk>ytk

(1 + ε
1
2 ξ)z0

(1 + ε
1
2 η)zk+1

· (1− ε
1
2 η)tk

(1 + ε
1
2 η)tk

·
k−1∏
i=0

pti+1−ti(zi+1 − zi),

(4.20)

where pt−s(z − y) is the transition probability P(Gt = z|Gs = y) for the geometric random walk (Gk)k≥0

defined as in (3.3). It admits the following expression:

pt−s(z − y) = 2z−y

(
y − z − 1

t− s− 1

)
,

for t− s ∈ Z+ and z − y ∈ Z−. Then (4.20) implies∣∣∣∣12ε 1
2 · chY ε

(
−1

2
+

1

2
ε

1
2 η,−1

2
+

1

2
ε

1
2 ξ

)∣∣∣∣
≤ ε

1
2

M−1∑
k=0

∑
zi≤yti

0≤i≤k−1

∑
zk>ytk

|1 + ε
1
2 ξ|z0

|1 + ε
1
2 η|zk+1

· |1− ε
1
2 η|tk

|1 + ε
1
2 η|tk

·
k−1∏
i=0

pti+1−ti(zi+1 − zi).
(4.21)

(b) We bound each term on the right-hand side of (4.21) corresponding to index k. For k = 0 we have

ε
1
2

∞∑
z0=yt0+1

|1 + ε
1
2 ξ|z0

|1 + ε
1
2 η|z0+1

=
ε

1
2

|1 + ε
1
2 η| − |1 + ε

1
2 ξ|

. (4.22)

For k ≥ 1, we have

ε
1
2

∑
zi≤yti

0≤i≤k−1

∑
zk>ytk

|1 + ε
1
2 ξ|z0

|1 + ε
1
2 η|zk+1

· |1− ε
1
2 η|tk

|1 + ε
1
2 η|tk

·
k−1∏
i=0

pti+1−ti(zi+1 − zi)

≤ ε
1
2

∑
z0≤yt0 ,zk>ytk

|1 + ε
1
2 ξ|z0

|1 + ε
1
2 η|zk+1

· |1− ε
1
2 η|tk

|1 + ε
1
2 η|tk

· ptk−t0(zk − z0)

= ε
1
2
|1− ε

1
2 η|tk

|1 + ε
1
2 η|tk

·
t0−tk∑

δ=ytk
−yt0+1

|1 + ε
1
2 η|−δptk−t0(δ)

 yt0∑
z0=ytk

−δ+1

|1 + ε
1
2 ξ|z0

|1 + ε
1
2 η|z0+1



= ε
1
2
|1− ε

1
2 η|tk

|1 + ε
1
2 η|tk

·
t0−tk∑

δ=ytk
−yt0+1

|1 + ε
1
2 η|−δptk−t0(δ)

 |1+ε
1
2 ξ|ytk−δ+1

|1+ε
1
2 η|ytk−δ+1

− |1+ε
1
2 ξ|yt0+1

|1+ε
1
2 η|yt0+1

|1 + ε
1
2 η| − |1 + ε

1
2 ξ|

 .

(4.23)

By the assumptions of ξ and η, we have

|1− ε
1
2 η| < |1 + ε

1
2 η|, |1 + ε

1
2 ξ| < 1 < |1 + ε

1
2 η|. (4.24)
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Hence ∣∣∣∣∣1− ε
1
2 η

1 + ε
1
2 η

∣∣∣∣∣
tk

≤ 1,

∣∣∣∣∣1 + ε
1
2 ξ

1 + ε
1
2 η

∣∣∣∣∣
yt0+1

≤

∣∣∣∣∣1 + ε
1
2 ξ

1 + ε
1
2 η

∣∣∣∣∣
ytk

−δ+1

, for all ytk − yt0 + 1 ≤ δ, (4.25)

where we are using the fact that tk ≥ 0 and yt0 ≥ ytk − δ + 1 for all ytk − yt0 + 1 ≤ δ. Thus, we conclude

that the right-hand side of (4.23) is bounded above by

ε
1
2

|1 + ε
1
2 η| − |1 + ε

1
2 ξ|

· |1− ε
1
2 η|tk

|1 + ε
1
2 η|tk

· |1 + ε
1
2 ξ|ytk

+1

|1 + ε
1
2 η|ytk

+1
·

t0−tk∑
δ=ytk

−yt0+1

|1 + ε
1
2 ξ|−δptk−t0(δ). (4.26)

The summation over δ is bounded above by

∑
δ≤t0−tk

|1 + ε
1
2 ξ|−δptk−t0(δ) =

(
|1 + ε

1
2 ξ|

2− |1 + ε
1
2 ξ|

)tk−t0

, (4.27)

which follows from a standard moment generating function computation for the geometric random walk.

Finally, note that |1 + ε
1
2 η| ≥ 1 + ε

1
2Re(η) > 1 for η ∈ CR and |1 + ε

1
2 ξ| < 1 by our assumption, we have

ε
1
2

|1 + ε
1
2 η| − |1 + ε

1
2 ξ|

≤ ε
1
2

1 + ε
1
2Re(η)− 1

=
1

Re(η)
. (4.28)

By using the bound from (4.28) in (4.26) and summing over k, we arrive at the desired estimate (4.18).

For (4.19), we note the following simple inequality

C1|z| < log(|1 + z|) < C2|z|, for all z satisfying |z| < 100−1, (4.29)

for some constants C1 and C2 that are independent of z. Therefore by our assumption,

|1− εη2|tM−1

|1 + ε
1
2 η|2tM−1+ytM−1+1

≤ eC2|η2|εtM−1−(|C1|+|C2|)|η||ε1/2(2tM−1+ytM−1+1)| ≤ eC(|η2|+|η|+1), (4.30)

for some large constant C by using (4.15). For the other factor, we note that

x(2− x) ≥ 1− c2 when 1− c < x < 1 + c and 0 < c < 1. (4.31)

Therefore

|1 + ε
1
2 ξ|(2− |1 + ε

1
2 ξ|) ≥ 1− ε|ξ2|, (4.32)

and

(|1 + ε
1
2 ξ|(2− |1 + ε

1
2 ξ|))−tM−1+1 ≤ (1− ε|ξ2|)−tM−1+1 ≤C1|ξ2|ε(−tM−1+1)≤ eC(|ξ2|+1), (4.33)

for some constant C by using (4.15). Finally,

|1 + ε1/2ξ|2tM−1+ytM−1−1 ≤ e(|C1|+|C2|)|ξ|·ε1/2|2tM−1+ytM−1−1| ≤ eC(|ξ|+1), (4.34)

for some constant C by using (4.15). Combining the above estimates, we obtain (4.19).

(a) Now we prove part (a). We start with rewriting χh(η, ξ) under the assumption that h ∈ mNW0,

recall the definition of χh(η, ξ) from (2.9). For supp(h) = {ω0, . . . , ωM−1} with 0 = ω0 > · · · > ωM−1, one

has P(τ+ ̸= 0) = 0 where τ+ is defined in (2.19). Thus, it is easy to check that the first and third term on
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the right-hand side of (2.9) are both equal to eh(0)(η−ξ)

η−ξ and they cancel each other. On the other hand, since

P(τ− /∈ {ω0, . . . , ωM−1}) = 0, the second term on the right-hand side of (2.9) is given by

M−1∑
k=0

∫
si≥θi,0≤i≤k−1;

sk<θk

eskη+ωkη
2−s0ξ ·

k−1∏
i=0

pωi−ωi+1
(si+1 − si) ds0 · · · dsk, (4.35)

where pω−ω′(s − s′) = 1√
4π(ω−ω′)

e
− (s−s′)2

4(ω−ω′) is the transition density of a Brownian motion with diffusivity

constant 2. Thus for h ∈ mNW0, we have

χh(η, ξ) =

M−1∑
k=0

∫
si≥θi,0≤i≤k−1;

sk<θk

eskη+ωkη
2−s0ξ ·

k−1∏
i=0

pωi−ωi+1(si+1 − si) ds0 · · · dsk. (4.36)

Now we fix ξ ∈ CL, η ∈ CR, and consider (4.20). Use the following scaling and recall that ω0 = θ0 = 0,

ti := −⌊ε−1ωi⌋ − ⌊1
2
ε−

1
2 θi⌋+ 1, zi := 2⌊ε−1ωi⌋ − ⌊ε− 1

2 (si − θi)⌋, yti := 2⌊ε−1ωi⌋. (4.37)

We write (4.20) as a multiple Riemann sum

1

2
ε

1
2 · chY ε

(
−1

2
+

1

2
ε

1
2 η,−1

2
+

1

2
ε

1
2 ξ

)
=

M−1∑
k=0

∫
si≥θi,0≤i≤k−1;

sk<θk

(1 + ε
1
2 ξ)z0

(1 + ε
1
2 η)zk+2tk+1

· (1− εη2)tk ·
k−1∏
i=0

ε−
1
2 pti+1−ti(zi+1 − zi) ds0 · · · dsk.

(4.38)

Note that when s0, . . . , sk are all fixed, the factors in the integrand all converge as ε → 0:

(1 + ε
1
2 ξ)z0 → e−s0ξ,

(1 + ε
1
2 η)zk+2tk+1 → e−skη,

(1− εη2)tk → eωkη
2

,

ε−
1
2 pti+1−ti(zi+1 − zi) → pωi−ωi+1

(si+1 − si),

(4.39)

where the last convergence follows from the local central limit theorem or a direct computation using the

formulas. Thus, we formally obtain that the limit of (4.38) is equal to (4.35), therefore (4.17) follows.

In order to rigorously show the above convergence, we need to show that (4.38) is uniformly bounded

and the dominated convergence theorem applies. Note that the right-hand side of (4.38) is the same as that

of (4.21). Therefore, (4.19) gives a uniform bound for (4.38). This completes the proof.

4.3 Convergence of the series expansion

In this section we prove Lemma 4.3 and 4.4. We will make the additional assumption that 0 < τ1 < · · · < τm
to make the presentation lighter. The convergence results and arguments in this section still work if τi = τi+1

for some i but the contours need to be chosen carefully to make sure that the integrand has the desired super-

exponential decay. Alternatively, one can directly work with the limiting KPZ fixed point formula which

is continuous with respect to the limit τi+1 → τi and our choices of the angles in Figure 1 guarantees the

convergence of the formula (2.24) even when some time parameters are equal.

We will deform the u, v contours so that locally near the critical point − 1
2 , they look like the limiting

contours for ξ, η. More concretely, let ΓL be a contour in the left half-plane going from ∞e−2πi/3 to ∞e2πi/3

and ΓR be a contour in the right half-plane going from ∞e−πi/5 to ∞eπi/5 (see Figure 1). For each ε > 0,
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R

iR

− 1
2

0−1

Figure 3: The deformed u, v-contours. Inside the dashed circle is the region {w ∈ C :
∣∣w + 1

2

∣∣ < 1
200

}, where we deform the

contours to be the same as their limiting counterparts shown in Figure 1.

we deform the u-contour ΣL and v-contour ΣR (see Figure 2) so that the corresponding contours Γε
L and Γε

R

for the rescaled variables ξ := 2ε−
1
2

(
u+ 1

2

)
and η := 2ε−

1
2

(
v + 1

2

)
satisfy

Σ̂L ⊂ Ω̂ε
L, Γε

L ∩ {ζ ∈ C : |ζ| ≤ 1

100
ε−

1
2 } = ΓL ∩ {ζ ∈ C : |ζ| ≤ 1

100
ε−

1
2 },

Σ̂R ⊂ Ω̂ε
R, Γε

R ∩ {ζ ∈ C : |ζ| ≤ 1

100
ε−

1
2 } = ΓR ∩ {ζ ∈ C : |ζ| ≤ 1

100
ε−

1
2 },

(4.40)

where

Ω̂ε
L := {−ε−

1
2 + ε−

1
2 z : |z| < 1}, Ω̂ε

R := {ε− 1
2 + ε−

1
2 z : |z| < 1}. (4.41)

See Figure 3 for an illustration of the deformed contours. Note that

u ∈ ΩL ⇐⇒ ξ ∈ Ω̂ε
L, v ∈ ΩR ⇐⇒ η ∈ Ω̂ε

R.

Recall the functions fi defined in (3.14). We now introduce some rescaled versions of them. For each

1 ≤ i ≤ m, ζ ∈ CL ∪ CR and ε > 0 sufficiently small, define

fεi (ζ) := (1− ε
1
2 ζ)k

ε
i−kε

i−1(1 + ε
1
2 ζ)(k

ε
i−1−kε

i )+(aε
i−1−aε

i )e
1
2 (t

ε
i−tεi−1)ε

1
2 ζ . (4.42)

Here

kεℓ :=
1

2
ε−

3
2 τℓ − ε−1αℓ −

1

2
ε−

1
2 βℓ +O(1), aεℓ := 2ε−1αℓ +O(1), tεℓ := 2ε−

3
2 τℓ, for 1 ≤ ℓ ≤ m, (4.43)

with the convention that kε0 = aε0 = tε0 := 0. It is straightforward to check that

fεi (ξ)

fεi (η)
=

fi

(
− 1

2 + 1
2ε

1
2 ξ
)

fi

(
− 1

2 + 1
2ε

1
2 η
) , ∀ξ ∈ CL, η ∈ CR,

where fi’s are defined in (3.14) with the parameters chosen as in (4.43). We begin by stating the needed

estimates and asymptotics for the functions fεi .

Lemma 4.6. Assume 0 < τ1 < · · · < τm. Let fεi be defined as in (4.42) for 1 ≤ i ≤ m. The following holds.

(a) For any ζ ∈ CL ∪ CR fixed, we have

lim
ε→0

fεi (ζ) = fi(ζ) =: exp

(
−1

3
(τi − τi−1)ζ

3 + (αi − αi−1)ζ
2 + (βi − βi−1)ζ

)
, 1 ≤ i ≤ m. (4.44)
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(b) There exists constants c, C > 0 such that

|fεi (ξ)| ≤ Ce−c(τi−τi−1)|ξ|3 , ∀ξ ∈ Γε
L, and |fεi (η)| ≥ C−1ec(τi−τi−1)|η|3 , ∀η ∈ Γε

R. (4.45)

Proof. To lighten the notation we temporarily denote τ = τi− τi−1, α = αi−αi−1 and β = βi−βi−1. Write

fεi (ζ) = exp
(
ε−

3
2 τ · g3(ζ) + ε−1α · g2(ζ) + ε−

1
2 β · g1(ζ)

)
,

where

g1(ζ) := −1

2
log(1− ε

1
2 ζ) +

1

2
log(1 + ε

1
2 ζ),

g2(ζ) := − log(1− ε
1
2 ζ)− log(1 + ε

1
2 ζ),

g3(ζ) :=
1

2
log(1− ε

1
2 ζ)− 1

2
log(1 + ε

1
2 ζ) + ε

1
2 ζ.

(4.46)

Part (a) follows from a straightforward Taylor expansion of (4.46). For part (b) we will assume ζ = η ∈ Γε
R,

the other case is similar. We split into two cases depending on whether |η| ≤ 1
100ε

− 1
2 or not. Using the

elementary bound ∣∣∣∣∣log(1− z) +

n−1∑
k=1

zk

k

∣∣∣∣∣ ≤ |z|n

n(1− |z|)
, ∀|z| < 1,

we have for |η| ≤ 1
100ε

− 1
2 : ∣∣∣∣g3(η) + 1

3
ε

3
2 η3
∣∣∣∣ ≤ ε2|η|4 ≤ ε

3
2

100
|η|3.

Thus,

Re (g3(η)) ≥ Re

(
−1

3
ε

3
2 η3
)
−
∣∣∣∣g3(η) + 1

3
ε

3
2 η3
∣∣∣∣ ≥ −1

3
ε

3
2Re(η3)− 1

100
ε

3
2 |η|3 ≥ c′ε

3
2 |η|3,

for some c′ > 0, due to our choice of the contour ΓR. Similar argument shows that

|g2(η)| ≤ C ′ε|η|2, |g1(η)| ≤ C ′ε
1
2 |η|,

for some C ′ > 0. Thus for |η| ≤ 1
100ε

− 1
2 , we have

|fεi (η)| = exp
(
ε−

3
2 τ · Re(g3(η)) + ε−1α · Re(g2(η)) + ε−

1
2 β · Re(g3(η))

)
≥ exp(cτ |η|3 − C ′|α||η|2 − C ′|β||η|) ≥ C exp(c′|η|3),

for some constants c, c′, C, C ′ > 0. On the other hand, it is elementary to check that for η ∈ Ω̂ε
R\{|η| ≤

1
100ε

− 1
2 }, we have

Re(g3(η)) ≥ c3 > 0, |g2(η))| ≤ C2, |g1(η)| ≤ C1.

Thus, for such η we have

|fεi (η)| ≥ exp(c3ε
− 3

2 − C2ε
−1 − C1ε

− 1
2 ) ≥ exp(c′3ε

− 3
2 ) ≥ exp(c′3|η|3/8),

since in this region 1
100ε

− 1
2 ≤ |η| ≤ 2ε−

1
2 . This completes the proof of part (b) and the lemma.
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4.3.1 Proof of Lemma 4.3

Introduce the change of variables

u
(ℓ)
iℓ

= −1

2
+

1

2
ε

1
2 ξ

(ℓ)
iℓ

, v
(ℓ)
iℓ

= −1

2
+

1

2
ε

1
2 η

(ℓ)
iℓ

, (4.47)

for 1 ≤ ℓ ≤ m and 1 ≤ iℓ ≤ nℓ. It is easy to check that under this change of variables we have

C
(
U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)

)
=

(
2

ε

)nℓ+nℓ+1
2

C
(
ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)

)
, (4.48)

C
(
U (m);V (m)

)
=

(
2

ε

)nm
2

C
(
ξ(m);η(m)

)
, (4.49)

for 1 ≤ ℓ ≤ m − 1. As in (4.40), we split the ξ, η contours depending on whether they lie in the region

Ωε
0 := {w ∈ C : |w| ≤ 1

100ε
− 1

2 } or not, and deform the contours so that Γε
L/R agree with ΓL/R inside Ωε

0.

Recall the definition of D(n)
Y ε in (3.16) and D

(n)
h in (2.24). Let A be the event that all the variables ξ

(ℓ)
iℓ

, η
(ℓ)
iℓ

lie inside Ωε
0 for 1 ≤ ℓ ≤ m and 1 ≤ iℓ ≤ nℓ, and Ac be the complement. Define

D(n,main)
Y ε :=

m−1∏
ℓ=1

(1− zℓ)
nℓ
(
1− z−1

ℓ

)nℓ+1

(
m∏
ℓ=1

nℓ∏
iℓ=1

∫
Γℓ,L

dµz(ξ
(ℓ)
iℓ

)

∫
Γℓ,R

dµz(η
(ℓ)
iℓ

)

)
1A(

m∏
ℓ=1

nℓ∏
iℓ=1

fεℓ (ξ
(ℓ)
iℓ

)

fεℓ (η
(ℓ)
iℓ

)

)
· det

[
1
2ε

1
2 chY ε

(
− 1

2 + 1
2ε

1
2 η

(1)
j ,− 1

2 + 1
2ε

1
2 ξ

(1)
i

)]
1≤i,j≤n1

·
m−1∏
ℓ=1

C
(
ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)

)
· C(ξ(m);η(m)),

(4.50)

and D(n,error)
Y ε := D(n)

Y ε −D(n,main)
Y ε . Note that

D(n,error)
Y ε =

m−1∏
ℓ=1

(1− zℓ)
nℓ
(
1− z−1

ℓ

)nℓ+1

(
m∏
ℓ=1

nℓ∏
iℓ=1

∫
Γε
ℓ,L

dµz(ξ
(ℓ)
iℓ

)

∫
Γε
ℓ,R

dµz(η
(ℓ)
iℓ

)

)
1Ac

(
m∏
ℓ=1

nℓ∏
iℓ=1

fεℓ (ξ
(ℓ)
iℓ

)

fεℓ (η
(ℓ)
iℓ

)

)
· det

[
1
2ε

1
2 chY ε

(
− 1

2 + 1
2ε

1
2 η

(1)
j ,− 1

2 + 1
2ε

1
2 ξ

(1)
i

)]
1≤i,j≤n1

·
m−1∏
ℓ=1

C
(
ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)

)
· C(ξ(m);η(m)).

(4.51)

We claim that:

lim
ε→0

D(n,main)
Y ε = D

(n)
h , lim

ε→0
D(n,error)

Y ε = 0. (4.52)

For the first part of the claim, note that the integrand on the right-hand side of (4.50) converges pointwise

to the integrand on the right-hand side of (2.24) by Lemma 4.6(a) and Proposition 4.2(a). On the other

hand, the cubic exponential decay bound for |fεi | from Lemma 4.6(b) and the quadratic exponential growth

estimate (4.19) implies that the integrand on the right-hand side of (4.50) has a cubic exponential decay in

every variable η
(ℓ)
iℓ

, ξ
(ℓ)
iℓ

as they go to ∞, uniform in ε. Thus, the dominated convergence theorem applies,

and the first claim is proved.

For the second part of the claim, note that on Ac, at least one of the variables, say ξ
(1)
1 , lies outside

Ω̂ε
0. Then Lemma 4.6(b) implies that |fε1(ξ

(1)
1 )| ≤ C exp(−cε−

3
2 ) for all ξ

(1)
1 ∈ Γε

1,L\Ω̂ε
0. On the other hand,
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Proposition 4.2(b) implies that∣∣∣∣12ε 1
2 chY ε

(
−1

2
+

1

2
ε

1
2 η

(1)
j ,−1

2
+

1

2
ε

1
2 ξ

(1)
1

)∣∣∣∣ ≤ C exp(cε−1), (4.53)

for some c, C > 0 and all 1 ≤ j ≤ n1. The other parts of the integrand remain bounded. Thus,

|D(n,error)
Y ε | ≤ Cε−(n1+···+nm) · exp(−cε−

3
2 ) → 0, as ε → 0. (4.54)

This proves the second part of the claim, and Lemma 4.3 follows.

4.3.2 Proof of Lemma 4.4

Recall the expression (3.16) for D(n)
Y ε . We first rewrite it slightly by writing fεi (ζ) = fεi (ζ)

1
2 · fεi (ζ)

1
2 and

putting one of the square root inside the first determinant, to get

D(n)
Y ε =

m−1∏
ℓ=1

(1− zℓ)
nℓ
(
1− z−1

ℓ

)nℓ+1

(
m∏
ℓ=1

nℓ∏
iℓ=1

∫
Γε
ℓ,L

dµz(ξ
(ℓ)
iℓ

)

∫
Γε
ℓ,R

dµz(η
(ℓ)
iℓ

)

)
m∏
ℓ=2

nℓ∏
iℓ=1

fεℓ (ξ
(ℓ)
iℓ

)

fεℓ (η
(ℓ)
iℓ

)(
n1∏

i1=1

fε1(ξ
(1)
i1

)1/2

fε1(η
(1)
i1

)1/2

)
· det

[
fε1 (ξ

(1)
i )1/2

fε1 (η
(1)
j )1/2

· 1
2ε

1
2 chY ε

(
− 1

2 + 1
2ε

1
2 η

(1)
j ,− 1

2 + 1
2ε

1
2 ξ

(1)
i

)]
1≤i,j≤n1

·
m−1∏
ℓ=1

C
(
ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)

)
· C(ξ(m);η(m)),

(4.55)

Here the choice of square root does not matter as long as we make the same choice for the two. The advantage

of this rewriting is that∣∣∣∣∣ fε1(ξ(1)i )1/2

fε1(η
(1)
j )1/2

· 1
2
ε

1
2 chY ε

(
−1

2
+

1

2
ε

1
2 η

(1)
j ,−1

2
+

1

2
ε

1
2 ξ

(1)
i

)∣∣∣∣∣ ≤ c, ∀1 ≤ i, j ≤ n1, (4.56)

for some constant c > 0 independent of ε and ξ(1),η(1). Thus, by Hadamard’s inequality∣∣∣∣∣det
[
fε1 (ξ

(1)
i )1/2

fε1 (η
(1)
j )1/2

· 1
2ε

1
2 chY ε

(
− 1

2 + 1
2ε

1
2 η

(1)
j ,− 1

2 + 1
2ε

1
2 ξ

(1)
i

)]
1≤i,j≤n1

∣∣∣∣∣ ≤ n
n1
2

1 · cn1 . (4.57)

The same arguments imply that

|C(ξ(m);η(m))| ≤ n
nm
2

m ·Dnm , (4.58)

and

|C
(
ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)

)
| ≤ (nℓ + nℓ+1)

nℓ+nℓ+1
2 ·D

nℓ+nℓ+1
2 ≤ n

nℓ
2

ℓ n
nℓ+1

2

ℓ+1 · (2D)
nℓ+nℓ+1

2 , (4.59)

for 1 ≤ ℓ ≤ m − 1. Here D is chosen to be the reciprocal of the minimal distance between different Γε

contours, which can be made positive. Thus,

|D(n)
Y ε | ≤

m−1∏
ℓ=1

|1− zℓ|nℓ+nℓ+1

|zℓ|nℓ+1
· (C ′)n1+···+nm ·

m∏
ℓ=1

nnℓ

ℓ ·
n1∏

i1=1

∫
Γε
1,L

d|ξ(1)i1
|

2π

∫
Γε
1,R

d|η(1)i1
|

2π

|fε1(ξ
(1)
i1

)| 12

|fε1(η
(1)
i1

)| 12

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1 + |zℓ|
|1− zℓ|

)2 ∫
Γε
ℓ,L

d|ξ(ℓ)iℓ
|

2π

∫
Γε
ℓ,R

d|η(ℓ)iℓ
|

2π

|fεℓ (ξ
(ℓ)
iℓ

)|

|fεℓ (η
(ℓ)
ℓ1

)|

≤
m−1∏
ℓ=1

(1 + |zℓ+1|)2nℓ+1

|zℓ|nℓ+1 |1− zℓ|nℓ+1−nℓ
·

m∏
ℓ=1

nnℓ

ℓ · Cn1+···+nm ,

(4.60)

for some constant C > 0, since each of the integrals is bounded by some finite constant. This completes the

proof of Lemma 4.4.
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5 From multiple narrow wedges to compactly supported initial

conditions

In this section we extend the multipoint formula (1.6) to any h ∈ UCc using a density argument. We choose

to work at the level of the KPZ fixed point formula, which enjoys more symmetry and nicer decay properties.

5.1 Density and Approximation

Our starting point is the following proposition, asserting that our formula is continuous with respect to the

initial condition on the space UCc.

Proposition 5.1. Given {hn}n≥1 ⊂ UC with supp(hn) ⊂ [−L,L] and supα∈R hn(α) ≤ β for all n ≥ 1.

Assume hn → h in UC and supp(h) ⊂ [−L,L], supα∈R h(α) ≤ β. Then

lim
n→∞

χhn(η, ξ) = χh(η, ξ), (5.1)

for all ξ ∈ CL and η ∈ CR. Recall the kernel χh was defined in Definition 2.2, equation (2.9). Consequently,

lim
n→∞

m−1∏
ℓ=1

∮
0

dzℓ
2πizℓ(1− zℓ)

Dhn(z1, . . . , zm−1) =

m−1∏
ℓ=1

∮
0

dzℓ
2πizℓ(1− zℓ)

Dh(z1, . . . , zm−1). (5.2)

Proof. It suffices to show that

lim
n→∞

∫
R
esη · EB(0)=s

[
exp(−τnξ

2 −B(τn)ξ)1τn<∞
]
=

∫
R
esη · EB(0)=s

[
exp(−τ ξ2 −B(τ )ξ)1τ<∞

]
,

where

τ := inf{α ≥ 0 : B(α) ≤ h(α)}, τn := inf{α ≥ 0 : B(α) ≤ hn(α)},

for a Brownian motion B(α) with diffusivity constant 2. Here we have suppressed the + sign in the subscript

of the hitting time to lighten the notation. The convergence of the other two parts in the definition of χh

can be proved in the same way. From [MQR21][(B.20)] we know

PB(0)=s(B(τn) ∈ db, τn ∈ dT ) → PB(0)=s(B(τ ) ∈ db, τ ∈ dT ) weakly as n → ∞.

Take a smooth function 0 ≤ gβ ≤ 1 such that gβ(x) ≡ 1 for x ≤ β and gβ(x) ≡ 0 for x ≥ β + 1. Since

h(α) ≤ β and hn(α) ≤ β for all α ∈ R and n ≥ 1, we have

1τn<∞(1− gβ(B(τn))) ≡ 0, 1τ<∞(1− gβ(B(τ ))) ≡ 0.

Hence,

EB(0)=s

[
exp(−τnξ

2 −B(τn)ξ)1τn<∞
]
= EB(0)=s

[
exp(−τnξ

2 −B(τn)ξ)1τn<∞gβ(Bτn)
]
,

EB(0)=s

[
exp(−τ ξ2 −B(τ )ξ)1τ<∞

]
= EB(0)=s

[
exp(−τ ξ2 −B(τ )ξ)1τn<∞gβ(Bτ )

]
.

By the weak convergence of (τn,B(τn)) to (τ ,B(τ )) we know

lim
n→∞

EB(0)=s

[
exp(−τnξ

2 −B(τn)ξ)1τn<∞gβ(Bτn)
]
= EB(0)=s

[
exp(−τ ξ2 −B(τ )ξ)1τn<∞gβ(Bτ )

]
,

since the function f(T, b) := exp(−Tξ2 − bξ)1T<∞gβ(b) : [0,∞] × R → C is bounded and continuous.

Therefore

lim
n→∞

EB(0)=s

[
exp(−τnξ

2 −B(τn)ξ)1τn<∞)
]
= EB(0)=s

[
exp(−τ ξ2 −B(τ )ξ)1τn<∞

]
.
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Finally, using the bound obtained in Proposition 2.3 and the dominated convergence theorem we have

lim
n→∞

∫
R
esη · EB(0)=s

[
exp(−τnξ

2 −B(τn)ξ)1τn<∞
]
=

∫
R
esη · EB(0)=s

[
exp(−τ ξ2 −B(τ )ξ)1τ<∞

]
.

This completes the proof of (5.1). (5.2) follows from the dominated convergence theorem and a similar

bound as in Lemma 4.4 whose proof is almost identical, and we omit it here.

To extend (1.6) to all h ∈ UCc using Proposition 5.1, we also need the following proposition, asserting

that the space mNW is dense in UCc.

Proposition 5.2. Let h ∈ UCc. Assume that supp(h) ⊂ [−L,L] and maxα∈R h(α) = β < ∞. Then there

exists a sequence {h(n)}n≥1 ⊂ NW, such that supp(h) ⊂ [−L,L], maxα∈R hn ≤ β for all n ≥ 1 and

hn → h in UC, as n → ∞.

Proof. We will use the following characterization (see, e.g., [MQR21, Section 3.1]): a sequence {hn}n≥1 ⊂ UC

converges to h ∈ UC locally if and only if for any x ∈ R, one has

1. lim supn→∞ h(xn) ≤ h(x), for all xn → x;

2. There exists xn → x such that lim infn→∞ h(xn) ≥ h(x).

It suffices to consider the restrictions of the functions on [−L,L]. For each n consider the dyadic intervals

In,k := [ k
2n ·L, k+1

2n ·L], for k = −2n,−2n +1, . . . , 2n − 1. On each interval In,k the maximum of h exists, let

mn,k ∈ In,k be one of the argmax, and set

hn(α) :=

2n−1∑
k=1

h(mn,k)1α=mn,k
−∞ · 1α̸=mn,k, ∀k,

here if some mn,k is the argmax of two consecutive intervals, then it should appear only once in the sum.

Now it is straightforward to check that for each α

lim sup
αn→α

hn(αn) ≤ h(α),

and there exists αn → α such that

lim inf
αn→α

hn(αn) ≥ h(α).

Therefore, hn → h locally in UC, and hence globally since hn, h are supported in [−L,L].

5.2 Proof of Proposition 2.4

Recall that what we have shown in Proposition 5.2 is that the formula (1.6) holds for initial conditions

h ∈ mNW0. We would like to prove it for h ∈ mNW by a shift argument. To this end it is more convenient

to have a more general version of the characteristic function χh, defined through (2.18), instead of the original

(2.9). The goal of this section is to prove the equivalence of the two, i.e., Proposition 2.4. To this end, we

denote

χω
h (η, ξ) := e−ωξ2

∫
R
ds e−sξ · EB(ω)=s

[
exp

(
τω
−η2 +B(τω

−)η
)
1τω

−>−∞

]
+ eωη2

∫
R
ds e+sη · EB(ω)=s

[
exp

(
−τω

+ξ2 −B(τω
+)ξ

)
1τω

+<∞

]
−
∫
R
dsEB(ω)=s

[
exp

(
τω
−η2 +B(τω

−)η − τω
+ξ2 −B(τω

+)ξ
)
1|τω

±|<∞

]
:= χω,1

h (η, ξ) + χω,2
h (η, ξ)− χω,3

h (η, ξ),

(5.3)
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where

τω
+ := inf{α ≥ ω : B(α) ≤ h(α)}, τω

− := sup{α ≤ ω : B(α) ≤ h(α)}.

We claim that χω
h = χω1

h , for any ω ∈ R. First assume h ∈ mNW, say

h(α) =

k∑
i=1

θi1α=ωi
−∞1α ̸=ωi, ∀i,

where ω1 > · · · > ωk. To lighten the notation, we will fix η, ξ and denote

E+(ω, s) := EB(ω)=s

[
exp

(
−τω

+ξ2 −B(τω
+)ξ

)
1τω

+<∞

]
,

E−(ω, s) := EB(ω)=s

[
exp

(
+τω

−η2 +B(τω
−)η

)
1τω

−>−∞

]
.

For ω ∈ [ω1,∞), we have

χω,1
h (η, ξ) = e−ωξ2

∫
R
ds

∫
R
db1 e

−sξpω−ω1(b1 − s)E−(ω1, b1)

= e−ω1ξ
2

∫
R
db1 e

−b1ξ E−(ω1, b1) = χω1,1
h (η, ξ),

where we are using the Markov property and the simple identity∫
R
ds esWpt(r − s) = etW

2+rW . (5.4)

Recall that pt−s(x − y) is the transition density of a Brownian motion with diffusivity constant 2. On the

other hand,

χω,2
h (η, ξ) = χω,3

h (η, ξ) = 1ω=ω1

eω1(η
2−ξ2)+θ1(η−ξ)

η − ξ
, ∀ω ≥ ω1.

Thus χω
h = χω1

h for all ω ≥ ω1. We proceed by induction. Assume for some 1 ≤ i ≤ k, χω
h = χω1

h holds for all

ω ≥ ωi. Now let ω ∈ [ωi+1, ωi). We will show χω
h = χωi

h , which is equal to χω1

h by the induction hypothesis.

By the same argument as above we have

χω,2
h (η, ξ) = χωi,2

h (η, ξ) + 1ω=ωi+1

eωi+1(η
2−ξ2)+θi+1(η−ξ)

η − ξ
. (5.5)

On the other hand, by the Markov property and the identity (5.4) we have

χωi,1
h (η, ξ) =

eωi(η
2−ξ2)+θi(η−ξ)

η − ξ
+ e−ωiξ

2

∫ ∞

θi

dbi

∫
R
ds e−biξpωi−ω(s− bi)E

−(ω, s)

=
eωi(η

2−ξ2)+θi(η−ξ)

η − ξ
+ χω,1

h − e−ωiξ
2

∫ θi

−∞
dbi

∫
R
ds e−biξpωi−ω(s− bi)E

−(ω, s),

(5.6)

where in the second equality we used Fubini’s theorem and the identity (5.4) to show that

e−ωiξ
2

∫
R
dbi

∫
R
ds e−biξpωi−ω(s− bi)E

−(ω, s) = e−ωξ2
∫
R
ds e−sξ · E−(ω, s) = χω,1

h .

Finally,

χω,3
h (η, ξ) =

∫
R
dsE−(ω, s) · E+(ω, s)

=

∫
R
dsE−(ω, s) ·

(∫
R
dbi pωi−ω(s− bi)E

+(ωi, bi) + 1ω=ωi+1 · e−ωi+1ξ
2−sξ · 1s≤θi+1

)
.
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We split the bi-integral into two parts depending on whether bi ≤ θi or bi > θi. For bi > θi we have∫
R
dsE−(ω, s)pωi−ω(s− bi) = E−(ωi, bi),

by the Markov property. For bi ≤ θi we have

E+(ωi, bi) = e−ωiξ
2−biξ1bi≤θi .

Thus

χω,3
h (η, ξ) =

∫ ∞

θi

dsE+(ωi, bi)E
−(ωi, bi) + e−ωiξ

2

∫ θi

−∞
dbi

∫
R
ds e−biξpω−ωi

(s− bi)E
−(ω, s)

+ 1ω=ωi+1

eωi+1(η
2−ξ2)+θi+1(η−ξ)

η − ξ
.

(5.7)

By combining (5.5), (5.6) and (5.7), we conclude that

χω
h = χω,1

h + χω,2
h − χω,3

h = χωi,1
h + χωi,2

h − χωi,3
h = χωi

h ,

for all ω ∈ [ωi+1, ωi). Thus, by induction χω
h = χh for all ω ∈ R and h ∈ mNW.

For general h ∈ UCc supported on [−L,L], bounded above by β, we use Proposition 5.2 to find a sequence

{hn}≥1 ⊂ mNW bounded above by β whose supports are contained in [−L,L] , such that hn → h in UC.

Then by Proposition 5.1 we know χhn → χh as n → ∞. A minor variant of Proposition 5.1 with the same

proof shows that χω
hn → χω

h as n → ∞ for any ω ∈ R as well. Thus,

χω
h = lim

n→∞
χω
hn = lim

n→∞
χhn = χh,

for all ω ∈ R and h ∈ UCc. This completes the proof of Proposition 2.4.

5.3 Proof of Theorem 1.2

Recall that in Proposition 4.2, we have shown Theorem 1.2 for h ∈ mNW0. We first extend it to h ∈ mNW

using Proposition 2.4. There exists α, β ∈ R such that hα,β := h(·+α)+β ∈ mNW0. Thus, by the invariance

property of the KPZ fixed point (see, e.g., [MQR21][Theorem 4.5]) we have

P

(
m⋂
ℓ=1

{H(αℓ, τℓ; h) ≤ βℓ}

)
= P

(
m⋂
ℓ=1

{H(αℓ − α, τℓ; h
α,β) ≤ βℓ + β}

)
. (5.8)

We apply Proposition 4.2 to the right-hand side of (5.8) and compare the resulting formula with the right-

hand side of (1.6). In order to prove that Theorem 1.2 holds for h ∈ mNW, it suffices to show that

χh(η, ξ) = eα(η
2−ξ2)+β(ξ−η)χhα,β (η, ξ). (5.9)

Now we prove (5.9). By the definition of the characteristic function in (2.9), we have

χhα,β (η, ξ) =

∫
R
ds e−sξ · EB(0)=s

[
exp

(
τα,β
− η2 +B(τα,β

− )η
)
1τα,β

− >−∞

]
+

∫
R
ds e+sη · EB(0)=s

[
exp

(
−τα,β

+ ξ2 −B(τα,β
+ )ξ

)
1τα,β

+ <∞

]
−
∫
R
dsEB(0)=s

[
exp

(
τα,β
− η2 +B(τα,β

− )η
)
1τα,β

− >−∞

]
· EB(0)=s

[
exp

(
−τα,β

+ ξ2 −B(τα,β
+ )ξ

)
1τα,β

+ <∞

]
,
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where

τα,β
+ := inf{x ≥ 0 : B(x) ≤ h(x+ α) + β}, τα,β

− := sup{x ≤ 0 : B(x) ≤ h(x+ α) + β}.
Note that B(x) ≤ h(x+α)+β if and only if B̂(x+α) ≤ h(x+α) where B̂(x) := B(x−α)−β. The invariance

of the Brownian motion implies that

LawB(0)=s(τ
α,β
+ ,B(τα,β

+ )) = LawB̂(α)=s−β(τ̂+ − α, B̂(τ̂+) + β),

where

τ̂− := sup{x ≤ α : B̂(x) ≤ h(x)}.
Thus ∫

R
ds e−sξ · EB(0)=s

[
exp

(
τα,β
− η2 +B(τα,β

− )η
)
1τα,β

− >−∞

]
=

∫
R
ds e−sξ · EB̂(α)=s−β

[
exp

(
(τ̂− − α)η2 + (B̂(τ̂−) + β)η

)
1τ̂−>−∞

]
= eβ(η−ξ)−αη2

∫
R
ds e−sξ · EB̂(α)=s

[
exp

(
τ̂−η

2 + B̂(τ̂−)η
)
1τ̂−>−∞

]
.

By applying similar arguments to the second and third term, we see that

eα(η
2−ξ2)+β(ξ−η)χhα,β (η, ξ) = e−αξ2

∫
R
dsEB̂(α)=s

[
exp

(
τ̂−η

2 + B̂(τ̂−)η
)
1τ̂−>−∞

]
+ eαη

2

∫
R
dsEB̂(α)=s

[
exp

(
−τ̂+ξ

2 − B̂(τ̂+)ξ
)
1τ̂+<∞

]
−
∫
R
dsEB̂(α)=s

[
exp

(
τ̂−η

2 + B̂(τ̂−)η − τ̂+ξ
2 − B̂(τ̂+)ξ

)
1|τ̂±|<∞

]
,

which is equal to χα
h , and hence χh, by Proposition 2.4. Finally, for a general h ∈ UCc, we can choose a

sequence {hn}n≥1 ⊂ mNW such that hn → h and they satisfy the conditions in Proposition 5.2. By the

continuity of the law of the KPZ fixed point with respect to the initial condition, we know

lim
n→∞

P

(
m⋂
ℓ=1

{H(αℓ, τℓ; h
n) ≤ βℓ}

)
= P

(
m⋂
ℓ=1

{H(αℓ, τℓ; h) ≤ βℓ}

)
.

Hence, by Proposition 5.2 we have

P

(
m⋂
ℓ=1

{H(αℓ, τℓ; h) ≤ βℓ}

)
= lim

n→∞
P

(
m⋂
ℓ=1

{H(αℓ, τℓ; h
n) ≤ βℓ}

)

= lim
n→∞

m−1∏
ℓ=1

∮
0

dzℓ
2πizℓ(1− zℓ)

Dhn(z1, . . . , zm−1)

=

m−1∏
ℓ=1

∮
0

dzℓ
2πizℓ(1− zℓ)

Dh(z1, . . . , zm−1).

This completes the proof of Theorem 1.2.

6 Reduction in the equal-time case

The goal of this section is to simplify the multipoint formula (1.6) under the additional assumption that

all the time parameters τ1, . . . , τm are the same, say, equal to 1. We will show in Section 6.1 that one can

get rid of the additional contour integrals with respect to the parameters zi’s in (1.6), and get a Fredholm

determinant formula for the equal-time multipoint distribution. Then, in Section 6.2 we will show that the

Fredholm determinant formula matches the path integral formula in [MQR21].
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6.1 A new Fredholm determinant formula for the equal-time multipoint distri-

bution of the KPZ fixed point

The following Fredholm determinant formula holds for t he KPZ fixed point with a general initial condition

h that is compactly supported. We remark that an analogous Fredholm determinant for the narrow wedge

initial condition was obtained in [LO25, Proposition 2.1], with the kernel conjugated to Th below and defined

on a slightly different space.

Proposition 6.1. Let α1 < · · · < αm. Consider the KPZ fixed point starting from initial condition h ∈ UCc.

Then the following formula for the multipoint distribution at space-time points (α1, 1), . . . , (αm, 1) holds:

P

(
m⋂
ℓ=1

H(αℓ, 1; h) ≤ βℓ

)
= det(I +Th)L2({1,...,m}×Γ1,R), (6.1)

where the operator Th : L2({1, . . . ,m} × Γ1,R) → L2({1, . . . ,m} × Γ1,R) has the following kernel:

Th(i, ζ; j, η) :=

(
i∏

ℓ=1

∫
Γin
ℓ,L

dξℓ
2πi

) ∏i
ℓ=1 Fℓ(ξℓ) · χh(η, ξ1)∏i−1

ℓ=1(ξℓ − ξℓ+1) · (ξi − ζ)
· 1

fj(η)
. (6.2)

Here Γin
1,L := Γ1,L and

Fi(ζ) =
fi(ζ)

fi−1(ζ)
:=

{
e−

1
3 ζ

3+α1ζ
2+β1ζ , i = 1,

e(αi−αi−1)ζ
2+(βi−βi−1)ζ , 2 ≤ i ≤ m.

(6.3)

The proof of Proposition 6.1 is based on the following lemma, whose proof is almost identical to [LO25,

Lemma 2.4] and is omitted here. Note that the only difference (modulo obvious change of notation) between

(6.5) and [LO25, (2.31)] is that the Cauchy determinant C(η, ξ) is replaced by det
(
χh(η

(i)
ℓi
, ξ

(j)
ℓj

)
)
.

Lemma 6.2. Under the same assumption as in Proposition 6.1, we have

P

(
m⋂
ℓ=1

H(αℓ, 1; h) ≤ βℓ

)
=

∑
n1≥···≥nm≥0

1

(n1! · · ·nm!)2
D̂

(n)
h , (6.4)

where n = (n1, . . . , nm) ∈ Zm
+ and

D̂
(n)
h =

(
m∏
i=1

ni!

ki!

)2( m∏
i=1

ki∏
ℓi=1

∫
Γ1,L

dξ
(i)
ℓi

2πi

∫
Γ1,R

dη
(i)
ℓi

2πi

)
det
[
χh(η

(i)
ℓi
, ξ

(j)
ℓj

)
]

(i,ℓi),(j,ℓj)
1≤i,j≤m,1≤ℓi≤ki

·
m∏
i=1

det
[
hi(ξ

(i)
a , η

(i)
b )
]ki

a,b=1
·

m∏
i=1

ki∏
ℓi=1

1

fi(η
(i)
ℓi
)
.

(6.5)

Here ki := ni − ni+1 ≥ 0 with the convention that nm+1 := 0. The functions hi(ξ, η) are defined for all

(ξ, η) ∈ Γ1,L × Γ1,R as follows:

hi(ξ, η) :=


F1(ξ)

ξ − η
, i = 1,

i∏
ℓ=2

∫
Γin
ℓ,L

dξℓ
2πi

F1(ξ) ·
∏i

ℓ=2 Fℓ(ξℓ)

(ξ − ξ2) ·
∏i−1

ℓ=2(ξℓ − ξℓ+1) · (ξi − η)
, 2 ≤ i ≤ m.

(6.6)
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Proof of Proposition 6.1. We apply a generalization of the Andreief’s identity obtained in [LO25, Lemma

1.2] to the ξ-integrals. It gives

D̂
(n)
h =

m∏
i=1

(ni!)
2

ki!

(
m∏
i=1

ki∏
ℓi=1

∫
Γ1,R

dη
(i)
ℓi

2πi

)
det

∫
Γ1,L

dξ1
2πi

hi(ξ1, η
(i)
ℓi
) ·

χh(η
(j)
ℓj

, ξ1)

fj(η
(j)
ℓj

)


(i,ℓi),(j,ℓj)

=

m∏
i=1

(ni!)
2

ki!

(
m∏
i=1

ki∏
ℓi=1

∫
Γ1,R

dη
(i)
ℓi

2πi

)
det
[
Th(i, η

(i)
ℓi
; j, η

(j)
ℓj

)
]
(i,ℓi),(j,ℓj)

,

(6.7)

where Th(i, ζ; j, η) is defined as in (6.2). Thus, we have

P

(
m⋂
ℓ=1

H(αℓ, 1; h) ≤ βℓ

)
=

∑
k1,...,km≥0

1

k1! · · · km!

(
m∏
i=1

ki∏
ℓi=1

∫
Γ1,R

dη
(i)
ℓi

2πi

)
det
[
Th(i, η

(i)
ℓi
; j, η

(j)
ℓj

)
]
(i,ℓi),(j,ℓj)

= det(I +Th)L2({1,...,m}×Γ1,R).

6.2 Equivalence with the path integral formula of [MQR21]

The goal of this section is to prove that the equal-time multipoint formula (6.1) is equivalent to the following

path integral formula obtained in [MQR21] when the initial condition is compactly supported.

Proposition 6.3 (Proposition 4.3 of [MQR21]).

P

(
m⋂
ℓ=1

H(αℓ, 1; h) ≤ βℓ

)
= det(I−K

hypo(h)
1,α1

+ 1≤β1e
(α1−α2)∂

2

1≤β2 · · ·1≤βme(αm−α1)∂
2

K
hypo(h)
1,α1

)L2(R). (6.8)

We will first express the path integral kernel in terms of contour integrals, the result is summarized in

the following proposition.

Proposition 6.4. Assume h ∈ UCc. Let

Sh := −K
hypo(h)
1,α1

+ 1≤β1
e(α1−α2)∂

2

1≤β2
· · ·1≤βm

e(αm−α1)∂
2

K
hypo(h)
1,α1

.

Then we have the following contour integral representation for the kernel of Sh:

Sh(λ, µ) =− 1λ>β1

∫
Γ1,L

dξ

2πi

∫
Γ1,R

dη

2πi

f1(ξ)

f1(η)
· χh(η, ξ) · e(µ−β1)ξ−(λ−β1)η

+

m∑
i=2

1λ≤β1

(
i∏

ℓ=1

∫
Γin
ℓ,L

dξi
2πi

)∫
Γ1,R

dη

2πi

∏i
ℓ=1 Fℓ(ξℓ) · χh(η, ξ1)∏i−1

ℓ=2(ξℓ − ξℓ+1) · (ξi − η)

e(µ−β1)ξ1−(λ−β1)ξ2

fi(η)
.

(6.9)

Proof. First note that by writing 1≤βm = 1− 1>βm , we have

1≤β1
e(α1−α2)∂

2

· · ·1≤βm
e(αm−α1)∂

2

K
hypo(h)
1,α1

= 1≤β1
e(α1−α2)∂

2

· · ·1≤βm−1
e(αm−1−α1)∂

2

K
hypo(h)
1,α1

− 1≤β1
e(α1−α2)∂

2

· · ·1≤βm−1
e(αm−1−αm)1>βm

e(αm−α1)∂
2

K
hypo(h)
1,α1

,

where we are using the semigroup property

e(αm−1−αm)∂2

e(αm−α1)∂
2

K
hypo(h)
1,α1

= e(αm−1−α1)∂
2

K
hypo(h)
1,α1

.
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Repeating this argument for 1≤β1
e(α1−α2)∂

2 · · ·1≤βi
e(αi−α1)∂

2

K
hypo(h)
1,α1

with i = m− 1, . . . , 2, we see that

−K
hypo(h)
1,α1

+ 1≤β1
e(α1−α2)∂

2

1≤β2
· · ·1≤βm

e(αm−α1)∂
2

K
hypo(h)
1,α1

= −1>β1
K

hypo(h)
1,α1

−
m∑
i=2

1≤β1
e(α1−α2)∂

2

· · ·1≤βi−1
e(αi−1−αi)∂

2

1>βi
e(αi−α1)∂

2

K
hypo(h)
1,α1

.
(6.10)

Now recall the definition of K
hypo(h)
1,α1

from [MQR21, (4.5)]:

K
hypo(h)
1,α1

=
(
S
hypo(h−)
1,−α1

)∗
S1,α1

+ S∗
1,−α1

S
hypo(h+)
1,α1

−
(
S
hypo(h−)
1,−α1

)∗
S
hypo(h+)
1,α1

, (6.11)

where

St,x(p, q) = S∗
t,x(q, p) :=

∫
Γ1,R

dη

2πi
e

t
3η

3+xη2+(p−q)η =

∫
Γ1,L

dξ

2πi
e−

t
3 ξ

3+xξ2−(p−q)ξ, (6.12)

and

S
hypo(h+)
t,x (p, q) := EB(0)=p

[
St,x−τ+

(B(τ+), q)1τ+<∞
]
. (6.13)

We have

S∗
1,−α1

S
hypo(h+)
1,α1

(p, q)

=

∫
R
ds

∫
Γ1,R

dη

2πi
e

1
3η

3−α1η
2+(s−p)η · EB(0)=s

[∫
Γ1,L

dξ

2πi
e−

1
3 ξ

3+(α1−τ+)ξ2+(q−B(τ+))ξ

]

=

∫
Γ1,L

dξ

2πi

∫
Γ1,R

dη

2πi

e−
1
3 ξ

3+α1ξ
2+qξ

e−
1
3η

3+α1η2+pη
·
∫
R
ds esη · EB(0)=s

[
exp

(
−τ+ξ

2 −B(τ+)ξ
)]

,

where the change of order of integration is justified by Proposition 2.3. A similar computation for the other

two terms in (6.11) implies that

K
hypo(h)
1,α1

(p, q) =

∫
Γ1,L

dξ

2πi

∫
Γ1,R

dη

2πi

e−
1
3 ξ

3+α1ξ
2+qξ

e−
1
3η

3+α1η2+pη
· χh(η, ξ), (6.14)

where χh(η, ξ) is defined in (2.9). Thus

e(αi−α1)∂
2

K
hypo(h)
1,α1

(p, q) =

∫
Γ1,L

dξ

2πi

∫
Γ1,R

dη

2πi

e−
1
3 ξ

3+α1ξ
2+qξ

e−
1
3η

3+αiη2+pη
· χh(η, ξ), (6.15)

for 2 ≤ i ≤ m. On the other hand, for 2 ≤ i ≤ m, the heat kernel e(αi−1−αi)∂
2

can be expressed as

e(αi−1−αi)∂
2

(p, q) =
1√

4π(αi − αi−1)
e
− (p−q)2

4(αi−αi−1) =

∫
c+iR

dξi
2πi

e(q−p)ξi · e(αi−αi−1)ξ
2
i , (6.16)

for any c ∈ R. Thus the convolution e(α1−α2)∂
2

1≤β2
e(α2−α3)∂

2

has the following kernel:

e(α1−α2)∂
2

1≤β2e
(α2−α3)∂

2

(p, q) =

∫
c2+iR

dξ2
2πi

∫ β2

−∞
dr2

∫
c3+iR

dξ3
2πi

e−pξ2+r2ξ2−r2ξ3+qξ3 · e(α2−α1)ξ
2
2+(α3−α2)ξ

2
3

=

∫
c2+iR

dξ2
2πi

∫
c3+iR

dξ3
2πi

e(β1−p)ξ2+(q−β3)ξ3

ξ2 − ξ3
· F2(ξ2) · F3(ξ3),

where Fi(ζ) =: e(αi−αi−1)ζ
2+(βi−βi−1)ζ and c2 > c3. Similarly, for any 2 ≤ i ≤ m we have

e(α1−α2)∂
2

1≤β2
· · ·1≤βi−1

e(αi−1−αi)∂
2

(p, q) =

(
i∏

ℓ=2

∫
cℓ+iR

dξℓ
2πi

)
e(β1−p)ξ2+(q−βi)ξi∏i−1

ℓ=2(ξℓ − ξℓ+1)
·

i∏
ℓ=2

Fℓ(ξℓ), (6.17)
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where c2 > · · · > ci. Thus

e(α1−α2)∂
2

1≤β2
· · ·1≤βi−1

e(αi−1−αi)∂
2

1>βi
e(αi−α1)∂

2

K
hypo(h)
1,α1

(p, q)

=

(
i∏

ℓ=2

∫
cℓ+iR

dξℓ
2πi

)∫ ∞

βi

dr

∫
Γ1,L

dξ1
2πi

∫
Γ1,R

dη

2πi

e(β1−p)ξ2+(r−βi)ξi∏i−1
ℓ=2(ξℓ − ξℓ+1)

i∏
ℓ=2

Fℓ(ξℓ)
e−

1
3 ξ

3
1+α1ξ

2
1+qξ1

e−
1
3η

3+αiη2+rη
χh(η, ξ1)

=

(
i∏

ℓ=2

∫
cℓ+iR

dξℓ
2πi

)∫
Γ1,L

dξ1
2πi

∫
Γ1,R

dη

2πi

e(β1−p)ξ2+(q−β1)ξ1∏i−1
ℓ=2(ξℓ − ξℓ+1) · (η − ξi)

i∏
ℓ=2

Fℓ(ξℓ) ·
f1(ξ1)

fi(η)
· χh(η, ξ1).

(6.18)

By combining (6.18) with (6.10), we arrive at the desired expression (6.9) for Sh(λ, µ).

Finally we rewrite Th properly to match with Sh. Deform Γ1,L and Γin
2,L into two vertical lines ci + iR,

i = 1, 2, with 0 > c1 > c2. Then we have

1

ξ1 − ξ2
=

∫ 0

−∞
dλ eλ(ξ1−ξ2),

for any ξ1 ∈ Γ1,L and ξ2 ∈ Γin
2,L. Now we write Th := L1L2, where L1 : L2(R) → L2({1, . . . ,m} × Γ1,R) has

the following kernel:

L1(i, ζ;λ) =


−e−λζ1λ>0, i = 1,
i∏

ℓ=2

∫
Γin
ℓ,L

dξℓ
2πi

∏i
ℓ=2 Fℓ(ξℓ)e

−λξ2∏i−1
ℓ=2(ξℓ − ξℓ+1) · (ξi − ζ)

1λ≤0, 2 ≤ i ≤ m,
(6.19)

and L2 : L2({1, . . . ,m} × Γ1,R) → L2(R) has the following kernel:

L2(λ; j, η) :=

∫
Γ1,L

dξ1
2πi

f1(ξ1)

fj(η)
eλξ1 · χh(η, ξ1). (6.20)

Then we have

det(I +Th)L2({1,...,m}×Γ1,R) = det(I + L1L2) = det(I + L2L1) := det(I + Ŝh)L2(R),

where

Ŝh(λ, µ) =

m∑
i=1

∫
Γ1,R

dη

2πi
L2(λ; i, η)L1(i, η;µ)

= −
∫
Γ1,R

dη

2πi

∫
Γ1,L

dξ

2πi

f1(ξ)

f1(η)
eλξ−µη · χh(η, ξ) · 1µ>0

+

m∑
i=2

∫
Γ1,R

dη

2πi

(
i∏

ℓ=1

∫
Γin
ℓ,L

dξℓ
2πi

) ∏i
ℓ=1 Fℓ(ξℓ)∏i−1

ℓ=2(ξℓ − ξℓ+1) · (ξi − η)

eλξ1−µξ2

fi(η)
· χh(η, ξ1) · 1µ≤0.

(6.21)

Comparing (6.21) with (6.9), we see that Ŝh(λ, µ) = Sh(µ+ β1, λ+ β1). Thus

det(I + Sh)L2(R) = det(I + Ŝh)L2(R) = det(I +Th)L2({1,...,m}×Γ1,R).

This completes the proof of the equivalence between Proposition 6.1 and 6.3.
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