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Abstract

We prove Airy process variational formulas for the one-point probability distribution of (dis-
crete time parallel update) TASEP with general initial data, as well as last passage percolation
from a general lattice path to a point. We also consider variants of last passage percolation with
inhomogeneous weights and provide variational formulas of a similar nature. This proves one as-
pect of the conjectural description of the renormalization fixed point of the Kardar-Parisi-Zhang
universality class.

1 Introduction

The totally asymmetric simple exclusion process (TASEP) is a prototypical interacting particle
system, or (via integration) random growth process. The theory of hydrodynamics describes the
law of large number for the evolution of the system’s particle density, or height function. In
particular, if h(z;t) represents the height function, then eh(e~'z;e't) converges (as € — 0) as a
space-time process to the deterministic solution to a Hamilton Jacobi equation with explicit (model
dependent) flux [27]. The solution, of course, depends on the initial data and in particular on the
limit (as € — 0) of ehg(e~'z). It is possible to consider initial data hg,c which depends on € so that
€ho,e(€71x) has a limit.

The aim of the present paper is to describe, in a similar spirit, how fluctuations around the law
of large number evolves over time. Define

he(z;t) = c1€®h(coe L a; c3e*t) — h(x;t).
Then it is conjectured in [I8] that if we take

b=1/2, and z=3/2,
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then for ¢y, c2, c3 model dependent constant (chosen in terms of microscopic dynamics in terms of
the KPZ scaling theory [35, 28]) and suitable centering h¢(z;t) (coming from the hydrodynamic
theory) the space-time process h¢(-;-) will have a universal limit h(-;-) which is independent of
the underlying model. The class of all models which satisfy this is called the Kardar-Parisi-Zhang
universality class, and this limiting object is called the fixed point of this universality class.

Much of the description and almost all of the universality of this fixed point remains a matter
of conjecture. One of the main conjectures provided in [I8] (see also the review [33]) about this
fixed point is that its solution can be described via a variational problem (in the spirit of the Lax-
Oleinik formula for the inviscid Burgers equation) involving a four-parameter random field called
the space-time Airy sheet. A corollary of this conjectural description is that if h¢(-,0) converges (as
a spatial process) to some function ho(-), then we have the following distributional equality, valid
for any single pair of fixed x:

P(h(z,1) > —r) = P( max (A(y) — (z — y)* ~ bo(y)) <7).

yeR
Here A(-) is the Airy process (Section [2.6) and by scaling properties of b, this implies a similar
conjecture for general t.
The main contribution of the present paper is a proof of this conjectured variational description

for the limiting one-point distribution of TASEP. In particular, consider the parameter ¢ discrete
time parallel update TASEP height function (Section and define

' 2h(2coe Ly age3/%t) — 2¢ 1t
2d;;

he,TASEP (l’; t) _

where

 — co=—'— = .

1— g 0 PV 0 2

Theorem shows that if hSTASEP (. 0) converges in distribution (as a spatial process) to some
function ho(-) then (subject to certain growth hypotheses at infinity)

lim P(h T4 (2, 1) > —r) = P(glgg (AW) = (@ = 1)* = bo(y)) < 7).

aj =

In order to prove this we first relate the TASEP height function one-point distribution to a
discrete variational problem called point-to-curve geometric last passage percolation (LPP). The
particular curve in question encodes the height function initial data. LPP has been studied pre-
viously, and, in particular, Johansson [26] proved that the Airy process A(:) minus a parabola
describes the spatial fluctuations of point-to-point LPP as one point varies along an anti-diagonal
line. In order to extend Johansson’s result away from the anti-diagonal line and onto a general
curve we prove a uniform slow decorrelation result, which shows that up to deterministic shift (re-
lated to the given curve) the fluctuations along the line and along a general curve agree. The final
step in proving our result is to conclude that the resulting variational problem stays localized as €
goes to zero and this is achieved via a combination of large/moderate deviation bounds on TASEP
and a utilization of some regularity estimates coming from the Gibbs property of the associated
multi-layer PNG line ensemble (Section [6)).

In a similar manner we prove variational one-point distribution formulas for point to general
curve LPP as well as LPP in which some of the weights have been perturbed. As a corollary of
the TASEP and LPP results we provide variational formulas for a number of known one-point
distributions, such as arise in TASEP with combinations of wedge, flat and stationary initial data.



Organization of the paper

Section [2| introduces the models (LPP and TASEP) as well as the main results (Theorems
and about them. The proofs of these theorems are applications of Theorem m
on the uniform slow decorrelation and Theorem [2.19 on the Gibbs property, and they are given in
Section [3] Proofs of corollaries 2.9 and are given in Section[d The technical results, Theorems
and are proved in Sections [ and [6] respectively. Finally the appendix gives the proof of
Lemma
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2 Models and main results

2.1 Point-to-curve LPP

Associate to each site (i, j) € Z? an independent geometrically distributed random variable w(, ;)
with parameter 1 — ¢, such that

Pw(i,j) =k)=(1—-q)¢", k=0,1,2,.... (1)

The point-to-point last passage time between two lattice points (z,y) and (2/,y’) is denoted by
G (214 (2,y) and defined by

maX{ > w(i,j)\ﬂé(w,y)/‘(w’,y’)} if v <a'andy <y,

G(x/,y’) (x,y) = (i.4)em (2)

—00 otherwise,

where 7 stands for an up-right path such that 7 = (79 = (2, ), 71,72, ..., Ty qy—z—y = (2',Y))
and mp41 — 7, € {(1,0),(0,1)}. More generally, if (2/,') is a lattice point, and (z,y) is on a line
segment between two neighboring lattice points, then define

Gy (2, [y]) and Gy (2, [y] +1) if 2 € Z,
Gy ([7],y) and Gy ([2] + 1,y) if y € Z.
(3)

If (z,y) and (2/,y') are lattice points, we define the short-handed notations for the reversed last
passage time as

G (2 ) (2,y) := the linear interpolation between {

Gy (@,y) = Gayy(a’,y') and G(z,y) := Gv(oyo) (7,y) = G(,4)(0,0). (4)



We also define G(vay/)(x, y) by linear interpolation if (x,y) is on a line segment between two neigh-
boring lattice points, analogous to . We will consider a more general point-to-curve last passage
time, denoted by G/, (L) in this paper. Let (2',y') be a lattice point and L be a lattice path
in R? with L = L(s) = {(z(s),y(s)) | s € I}, for some interval I C R. Here a lattice path means
a directed path composed by line segments each of which connects two neighboring lattice points.
Define

G(x/,y’)(L) = iléII) {G(x/,y’)(x(s)v y(s))} : (5)
Although s is a continuous parameter, it suffices to take the supremum among a discrete set of
point-to-point last passage times.

As preliminaries for our work, let us recall some important results about the asymptotic behav-
ior of the point-to-point and point-to-curve last passage time. Focusing first on point-to-point last
passage percolation, we state the law of large numbers, large/moderate deviations and the fluctua-
tion limit theorems in the following proposition. Note that due to the symmetry of the lattice, we
state our results in terms of G(x,y).

Proposition 2.1. Let 7 be in a compact subset U of (0,00). Then
(a) (Johansson [25])

1 . 1 2,/
lim —G(yN,N) =ao(y), almost surely, where ap(y)= (4 Da+ 7,
N—oo N 1-— q

(6)

(b) (Baik-Deift-McLaughlin-Miller-Zhou [3]) There exist a (large) constant M > 0 and a (small)
constant & > 0 such that for large N, uniformly for all M < x < §N'/3, there exists ¢ > 0
such that ,

P (G(YN,N) < ag()N — aN'/?) < em” (7)

(c) (Johansson [25])

i P <G(7N,N) — ag(7)N

N—oo

where
~1/6

N q1/67 2/3 2/3
bo(V)—il_q Va+v7)7" A+ vra)7, 9)

and Foug(x) is the Tracy-Widom distribution for the limiting fluctuation of the largest eigen-
value in the Gaussian unitary ensemble (GUE), see Section[2.6,

In this paper, we need a counterpart of , which is stated below, and proved in Appendix

Lemma 2.2. Let v be in a compact subset U of (0,00). There exist a (large) constant M > 0 and
a (small) constant § > 0 such that for large N, uniformly for all M < x < SN1/3, there exists ¢ > 0
such that

P (G('yN, N) > ap(y)N + a;Nl/3) <e . (10)



We denote in this paper

2,4
ag = ap(l) = . 11
0o =ao(l)=— e (11)
Define the limit shape curve (see Figure (1)
. x
2= { () € (0.09) % (0,50 [yao (£) = a0}
(12)
: m 2(1+ /q)
= < (r(f)cosh,r(f)sinf) |0 € (0, =) and r(0) = ,
{(() (6) )‘ (0,3) and r(0) (cos@+sin9)\/§+2\/m}
and )
L:={(z,y)| 1-y,1—2z)€L}. (13)
Note that a a
0 =24 2q_1/2 and 1—— 90 9 2q_1/21 (14)

lim,_0 ap(x) lim, 0 ap(x)
so L (L resp.) is between (2 +2¢~'/2,0) and (0,24 2¢~V/?) ((=1 —2¢~/2,1) and (1, -1 —2¢~'/?)
resp.). Then by Proposition we have that if (z,y) € £, then G([zN], [yN]) = agN + o(N),
or equivalently, if (x,y) € £, then Gy n)([zN], [yN]) = agN + o(N).
A
22 4 2¢7 3

—1—2g %

Figure 1: The shapes of £ and L. Figure 2: Regions D (shaded) and D (D to-
gether with the two corners enclosed by gray
lines) and an example of N~1Ly.

The following result shows how the Airy process A(s) (see Section [2.6|) arises in describing the
spatial fluctuations of point-to-curve LPP. We define the step-like curve LY that is approximately
a anti-diagonal straight line

k—s if s € [k, k + 3],

. ) (15)
s—k—1 ifse[k+3,k+1].

LV = {(=1°5) +s,—1%s) —s) | s € R}, where 1°(s) = {



Proposition 2.3 (Johansson [26]). Define the stochastic process

HN(S) :

= <G (N +19(coN?35) + scoN3, N + 1°(coN?/3s) — scoN?/ 3) - a0N> . (16)
0

where ag is defined in and

(R U R R G 2V sy (17)

1— \/a ! q1/6

Then on any interval [—M, M|, we have the weak convergence (as measures on C([—M, M|,R)) as
N — oo of

bo = bo(1) =

Hy(s) = A(s) — s> (18)

The definition and some properties of the Airy process are provided in Section [2.6 This
functional limit theorem for the fluctuations of all G(y n)(—1°(s) +s, —1%(s) —s) with s = O(N?/3),
together with a tightness argument for large s, yields

Proposition 2.4 (Johansson [26]). As N — oo, the point-to-curve last passage time from (N, N)
to LY satisfies

N—oo

. G(n,n) (L) —agN B 2
lim P ( by N 1/3 <z|=P (r;lea]té((A(s) —s5%) < 33) . (19)

2.2 Main result on fluctuations in point-to-curve LPP

Our main result, Theorem [2.6], provides a similar variational characterization as Johansson’s results
(Proposition for point-to-curve LPP with a general class of the lattice paths.

Before stating our theorem, we specify the class of lattice paths which we will consider.

It is clear from , and Figure [1f that the horizontal line y = 1, the vertical line x = 1
and the curve L enclose a region, which we denote by D. Then we define the region D as the main
part of D with the two sharp corners cut off. To be precise, we define, as shown in Figure

D=D\{(z,y) |z <c3ory<ecs}, where c3€(—1—2¢""20). (20)

The meaning of the constant —1 — 2¢~/2 is shown in and Figure Then we let C' € R,
c1 € (0,1) and ¢o € (0,1/3) be constants, let £ : R — R be a continuous function and {my} C Ry
be a sequence of positive real numbers such that

{(s) < C+c18* and Nl_iffoo my = 0. (21)

We consider a sequence of lattice paths Ly. For each Ly, we denote its central part as
gt = {(@,y) € Ly |2 = y| < 200N%/3+2 | (22)

Then we assume the following:

Hypothesis 2.5.



e There is an interval

In = (aN,bN), where — N <an <bN§NC2, (23)
and
aN = oo € {—0}UR, by — by € {+0} UR, (24)
such that
L?\tfentral _ {<5C0N2/3 _ ([(8) + lN(S))doNl/g, _SCON2/3 _ (E(S) + lN(S))dON1/3) s € IN} ,
(25)
where In(s) : In — R is a continuous function with
max |In(s)| < my, (26)
seln
and 13
by (1+./4)
dy=—=—"7"— 27
o The other part of Ly satisfies
{(@.9) | (Va, Ny) € Ly \ L5} 11 ((=00,1] x (~00,1])) € D, (28)

as depicted in Figure[d, and

dist (L \ 575 0 (=00, V] % (-0, ) { 010) ' (5 %) ec}) > wsee, o)

where the distance is the Euclidean distance.

Note that we have no requirement of Ly outside of the region (—oo, N] x (—o0, N], because
Gv,ny(Ln) = Gvwvy(Ly N (=00, N] x (=00, NJ). (30)

Although it suffices to consider G|y n) (Ln), we state the result with an extra parameter o to
make it parallel to Theorem [2.8| stated later.

Theorem 2.6. Fiz {(s) and a sequence of lattice paths Ly satisfying Hypothesis with constants
C,c1,c9,c3 and sequence {my} defined above Hypothesis and also fit o > 0. Then for all

€ > 0 there exists No (depending on C,ci1,ca,c3,{mn} and o but not {(s) or Ly ) such that for all
N > Ny and all x € R

G _ (Ln) —agN
(N+[ocoN2/3],N—[ocoN2/3]) \ N 0 ,
P( bu V3 ) - (o (46— o=+ 109) sx>‘

<e (31)

Note that maxge (g, p.o) (A(s) — (s — 0)* 4 £(s)) is a well defined random variable, see Corollary
217



Remark 1. Theorem [2.6] as well as the subsequently stated results of Theorems [2.8] and [2.11] are
stated for deterministic initial / boundary data. Here in the statement of the theorem, and later
in the proof, we show that the convergence rate is independent of the particular formula of ¢(s)
and the particular shape of Ly. This is because later we are going to use the result (actually
its analog in TASEP model detailed below) when £(s) is random, say, distributed as the path of
random walk. Focusing on the above result, assume that ¢(s) is random and that for all € > 0 there
exist constants C' € R and ¢; € (0,1) such that with probability at least 1 — ¢, £(s) < C + ¢15? for
all s. Then Theorem holds for such a random #(s). Instead of coupling all initial data Ly to a
single (possibly random) ¢(s) it is also possible to consider Ly which satisfy all of the conditions

of Hypothesis except that is replaced by

Lyl = {(SCON2/3 — (En(s) + In(s))do N3, —seoN?/3 — (Un(s) + lN(S))dON1/3>

SEIN},

(32)
where ((s) converges as a spatial process to some (possibly random) £(s) satisfying the aforemen-
tioned bounds.

The above theorem is proved in Section [3.1] There are two main ingredient in the proof. The
first one is to show that the end of the longest path most likely lies in the vinicity of (0,0), that
is, a point (z,y) with 2 +y = O(N'/3) and x — y = O(N?/?). The second one is to show that the
theorem holds in the special case that Ly is of length N2/3, which is proved by the uniform slow
decorrelation property of the LPP model, see Theorem [2.18

2.3 TASEP with general initial data

For the analysis of the TASEP model, we introduce a slightly different LPP model where the i.i.d.
random variables w*(i, j) associated to each site are geometrically distributed on Z~g

w*(i,§) ~w(i,j) +1, suchthat Pw*(i,j)=k)=1—-q)¢" L k=12.... (33)

We similarly define the point-to-point LPP Gz;, y,)(x,y), point-to-curve LPP Gz‘m, y,)(L), and the

reversed LPP G’{x, y,)(az,y) by (3), and with the weights changed from w(i, ) to w*(3, j).

They have simple relations to the LPPs Ga, y,)(z, Y), GZ‘z, y,)(L) and (Jz‘m, y,)(:v, y) defined there, for
example, if one of (z,y) and (2/,y’) is a lattice point,

Gl (@,y) = Gy (z,y) +2" +y —z —y + 1. (34)

The TASEP model considered in our paper is that with discrete time and parallel updating
dynamics [9], and is defined as follows. Let infinitely many particles be initially at time ¢ = 0
placed on the integer lattice Z such that no lattice site is occupied by more than one particle,
and there are infinitely many particles to the left of 0. At each integer time, the particles decide
whether to jump to the right neighboring site simultaneously. For any particle = at time ¢t = n, if
its right neighboring site z(n)+ 1 was occupied at ¢t = n, then it does not move and z(n+1) = z(n);
otherwise it jumps to the right neighboring site (x(n + 1) = x(n) + 1) with probability 1 — ¢, or
does not move (z(n + 1) = x(n)) with probability q.

At any time ¢ > 0, we represent the positions of the particles by the height function A(-;t) :
R — R. We let h(0;t) = 2N; where Ny is the number of particles that have jumped from site —1 to



Figure 3: The height function h(s;t) at the initial time ¢ = 0. If at time ¢ = 1 one particle jumps
from —3 to —2, then h(s; 1) is changed into the dashed shape. The polygonal chain L representing
the initial state of the model is shown on the right.

site 0 during the time interval [0,¢). For any integer k, we define h(k;t) inductively from h(0;t) by
h(k+1;t) — h(k;t) = £1 where the sign is positive (negative resp.) if the site k is vacant (occupied
resp.) by a particle at time t. At last, for non-integer s, we define h(s;t) by the linear interpolation
between h([s];t) and h([s] + 1;t). See Figure [3|for an example. Also noting that h(s;t) = h(s; [t])
for all ¢t € Ry, we have that h(s;t) is determined by the values of h(k;n) where k,n € Z. Another
observation is that the value of h(k;t) is an integer that has the same parity of k.

To analyze the dynamics of the TASEP model, or equivalently, the dynamics of the height
function h(s;t), we introduce the polygonal chain

L= {(; + %h(s; 0), —g + %h(s; 0)>

s € (K, Kz]} , (35)

to represent the initial configuration of the model, as shown in Figure 3] where K is the position of
the leftmost unoccupied site at ¢t = 0 if it exists, or —oo otherwise, and K3 is one plus the position
of the rightmost occupied site at t = 0 if it exists, or +0o otherwise. .

The TASEP model can be coupled to the LPP model with weights w* (i, j) defined in (33]) (see
[25, [15] for example). The relation between the distribution of h(j;¢) and the LPP is given by

P(1(jit) > 1) =P (Gus s (D) <) (36)
2 7 2

for any j, k € Z with the same parity. Here L is the polygonal chain defined in . This coupling

follows by defining the TASEP height function at time ¢ as the rotated envelop of all points which

has last passage time less than or equal to t. The weights correspond with the probabilities of

particle movement.

2.4 Main result on TASEP with general initial data

Now we consider the TASEP model with general initial condition. Since the TASEP model is
mapped to the LPP model with weight function given in , the result for the TASEP is analogous
to that of the LPP model stated in Section . Below we set up the notations for the LPP model
with weight , give technical conditions in terms of LPP, and then present the result in terms
of the TASEP model.



Analogous to Proposition 2.1f(a)l we have

142,/
lim —G (YN, N) = aj(y) almost surely, where aj(y) =ao(y)+v+1= u (37)

N—oo N 1—gq
Then parallel to £ and £ defined in and , we define
2
a5 = aj(1) = —ay+2, (38)
\f
and then
LF = {(x,y) € (0,00) x (0,00 ‘ya0< > = }
(39)
. 2(1+/9)
= 0 0,r(0 0)0¢e (0, d )
{(T( ) c0s6,7(0) sin6) | (©, ) and r(0) = (cos @ + sin ) + 2/cos O sin g
and
L :=A(z,y) | (1 -y, 1 —=z) € L7}. (40)

By Theorem again, we have that if (z,y) € L£*, G*(zN,yN) = ajN + o(N), and
equivalently if (z,y) € L*, GZ‘N ) (zN,yN) = aiN + o(N). Then parallel to the regions D and D

shown in Figure [2| we define the region D* as the region enclosed by = 1, y = 1 and £*, and then
D* =D\ {(z,y) |z < ¢ ory < i}, where ¢ e (—1—2¢"2,0), (41)

where the value —1 — 2¢'/2 is analogous to the value 1 — 2¢~%2 in . We also let C' € R,
c1 €(0,1), c2 € (0,1/3), let £ : R — R be a continuous function and let {my} C R be a sequence
of positive real numbers such that is satisfied.

We consider a sequence of lattice paths L}; analogous to Ly considered in Section We
assume that each L}, is defined by the initial condition of a TASEP model, that is, for each index
N, we consider the TASEP model represented by a height function hy(s;t), and then let L}, be
the polygonal chain L that is defined by hn(s;0) in (35). For each L};, we denote its central part
as

Ly = {(@,y) € Liv |l — o] < 2c0N?/+2 . (42)
Then we assume the following

Hypothesis 2.7.

e There is an interval
I;f = (anbN)v (43)

where
— N2 <an <by <N?, and any — ax € {—00}UR, by — bo € {+00}UR, (44)
such that

preentral — { (sc0N2/3 — (£(s) + In () dEN3, —scoN?/3 — (£(s) + zN(s))d3N1/3) |se JJ*V},
(45)

10



or equivalently,
h(2scoN?/3;0) = —2(£(s) + In(s))dENY3, s e IY, (46)
where cqg is defined in , In(s) : IN — R is a continuous function with

max |Ix(s)] < my, (47)
SEIN

and dj is defined, analogous to , as

dy = =2 = . (48)

e The other part of L} satisfies
{@9) | (Vo Ny) € Ly \ L™} 1 (=00, 1) x (=00, 1]) € D*, (49)
and
. * *,central . . x Yy * 1/342c2
aist ( (23 \ L) (o0, N (00, 81) {0 | (35 5) € £7} ) > N2, (50)
where the distance is the Fuclidean distance.

Theorem 2.8. Fiz {(s) and a sequence of lattice paths L} satisfying Hypothesis with constants
C,c1,c2,c5 and sequence {my} defined above Hypothesis and also fir ¢ > 0. Here for each
N, L} is associated to the initial condition of a TASEP model whose height function is denoted
by hn(s;t) via the relation . Then for all € > 0 there exists Ny (depending on C,cq,c2,ch and
{mn},o but not £(s) or L) such that for all N > Ny and all x € R, the height function hy(s;0)
of the TASEP model, as defined in , satisfies

2 amy
. hN(QO-CONS,an) 2N N I ( max (A(s) —(s—0)*+ K(s)) < x)
QdEk)NE 5€(aoo,bo0)

<e (b1)

Remark 2. By the relation , we have that under the assumption that 2dgN 132 and 20¢oN?/3
are integers with the same parity,

2

hny(20coN3;aiN) — 2N

P N( 0Cp 373? ) S o :IP’<G* ) . ) L (L}‘v)é[aSN]>-
2d8N§ (N+ocoN3 —d{N32,N—ocoN3 —d{N3x)

(52)
The above equation implies Theorem [2.8 on TASEP is equivalent to an analog of Theorem [2.6] on
LPP.

Below we list several typical initial conditions of TASEP, and their initial height functions. We
characterize the initial height function h(s;0) only at integer-valued s. Note that all the initial
conditions are N-independent. Theorem covers more general, N-dependent initial conditions,
for example, periodic initial conditions with period O(N 2/ 3).

11



e (Step initial condition) Initially all negative sites are occupied and all non-negative sites are
empty, i.e.,
R3*P(5;0) = |s]. (53)

e (Flat initial condition) Initially all even sites are occupied and all odd sites are empty, i.e.,

0 ifs=0,42 44,...,

(54)
—1 ifs=41,43,...,

pliat(s;0) = {

e (Brownian/Bernoulli/stationary initial condition) Initially all sites are independently occu-
pied with probability % and empty with probability 1/2, i.e.,

0 if s =0.
hBe(5;0) = ¢ S5 wy ifs=1,2,..., (55)

-1 .
- i w; ifs=-1,-2,...,

and w; are random variables in i.i.d. two-point distribution such that P(w; = 1) = 1/2 and
Plw; = —-1) =1/2.

e (Wedge-flat initial condition) Initially all negative sites and all even sites are occupied, but
all positive odd sites are empty, i.e.,

hllat(s;0) if s >0,

56
hS*P(s;0) if s < 0. (56)

hstep/ﬂat<s; 0) _ {

e (Wedge-Bernoulli initial condition) Initially all negative sites are occupied, and all non-
negative sites are independently occupied with probability 1/2 and empty with probability
1/2, i.e.,

hBe(s:0) if s >0,

o7
RSP (s;0) if s < 0. (57)

hstep/Bern(S; 0) — {

e (Flat-Bernoulli initial condition) Initially all even negative sites are occupied, all odd negative
sites are empty, and all non-negative sites are independently occupied with probability 1/2
and empty with probability 1/2, i.e.,

RBem(5:0) if s >0,

58
hllat(s;0)  if s < 0. (58)

hﬂat/Bern(S; 0) _ {

As consequences of Theorem [2.8| we can prove variation formulas for one-point distributions of

TASEP started from initial data as in , , and , we have the following results.
To state the results in a uniform way, we denote the two-sided Brownian motion B(s) by

_[Bi(s) ifs>0,
Bls) = {B(—s) if s <0, (59)

where B4 (s) and B_(s) are independent standard Brownian motions starting at 0.
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Corollary 2.9. Let o be a real constant and h(s;t) be the height function of the TASEP.

(a) With the flat initial condition (54)),

, hiat(25coN2/3; a5 N) — 2N )
A}gnoolP’ ( RINIE >—z | =P (I.?Ga]lé( (A(s) — s%) < ac) . (60)

(b) With the Bernoulli initial condition (55)),

Bern 2/3. % _
lim P (h QoeoN"": agN) — 2N > —a:) =P <max (A(S) —(s—0)*+ \@q_l/“B(s)) < x) .

N—oo 2dy N1/3 s€R
(61)
(c) With the Wedge-flat initial condition (56)),
, pster/fat (95co N2/3; af N) — 2N )
A}gnoolf” < TN >—x| =P (I?g;( (A(s) — s%) < m) . (62)

(d) With the Wedge-Bernoulli initial condition (57)),

lim P

N—o0

hster/Bern (95¢o N2/3; af N) — 2N
> —x
2dyN1/3

s>0

=P (max (A(s) —(s—0)*+ \/§q_1/4B(s)> < :U> . (63)

(e) With the Flat-Bernoulli condition (53)),

N—oo

_— hﬂat/Bern(QO'CONQ/?); a(’SN) _ 9N s )=
2d3N1/3

P <max (.A(s) —(s—0)*+ \@q_l/4xszoB(s)> < x> . (64)

seR

Remark 3. The result for the flat initial condition is obtained in [26] and is given, in an
equivalent form, in Proposition [2.4] in the case that ¢ = 0. Since the flat initial condition is
translational invariant, the result holds for general . The step initial condition is singular in the
sense that K1 = K9 =0 in and hence ay = by = 0 in and then the interval (a0, boo) is
degenerate into a point {0}. The result, which is stated in Proposition [2.1f(c) actually is used in
the proof of Theorem so we do not list it as a corollary. The situation is comparable to that
explained in [16, Remark 1.6].

Comparing the results in Corollary with the asymptotics of h(s;t) obtained in continuous
TASEP models (see [4], [10], [2], [II] for details) that corresponds to the ¢ — 1_ limit of the
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discrete TASEP model considered in this paper, we obtain, modulo a change in order of taking
limits ¢ — 1_ and N — oo, (which we do not justify it in this paper)

P (rl]‘/aeaRx (A(s) — (s —0)?) < ac) = P23 4,(27%%0) < 2), (65)

(%g ( (s) — (s —0)? + \@B(S)) < x) = P(Agar (0) < ), (66)

P <1£1>zx§< (s — 0)2) < x) =P(As1(0) < =+ 0%Xo<0), (67)

(max ( (5) = (s — o) + \@B(s)) < x) = P(Apm_2(—0) < 4 0?), (68)

P (1 (A(5) = (5= 02 4 Vax20B(5)) < ) = FlArnaal-0) <o+ o). (09)

Below are explanations of notations:

n (65), A; stands for the Airy process with flat initial data, defined in [34] and [8, Formulas
(1.4) and (1.5)]. The A; process is stationary, and its 1-dimensional distribution is [21]

P(As(0) < 2) = Faon(22), (70)
where Fgog is the Tracy-Widom GOE distribution [36].

In , Agtat stands for the Airy process with stationary initial data, defined in [4], and we
follow the notation in [31), Section 1.11] and [33, Section 1.2]. The 1-dimensional distribution
of Agtat(0) appears also in literature as (see [4, Remark 1.3] and [22, Appendix A])

P(Astat(0) < ) = Fp(2) = H (2 + 0% 2, -] | (71)
2" 2
where F,(z) is defined in [22, Formula (1.20)] and H(z; w4, w_) is defined in [5, Definition
3].

In , the transition process As_,1 interpolating the As and A; processes is introduced in
[10, Definition 2.1] (see also [32, Formula (1.7)], where the notation for the right-hand side of

is G272 + 0% xo<0))-

In , the transition process Apm_so interpolating the Brownian motion and Ay process is
introduced in [24, Formula (3.6)], see also [14, Definition 2.13]. The 1-dimensional distribution
of Apm—s2(0) was conjectured in [29] and proved in [7] to be

P(Apym—2(o) < z) = Fi(z;0), (72)
where the distribution function F is introduced in [2, Definition 1.3].

In formula , The transition process As_,1,1,0 interpolating the Brownian motion and the
A; process is introduced in [II, Definition 18]. It is defined from the TASEP with one
slow particle, and it is related to the TASEP with flat-Bernoulli initial condition via Burke’s
theorem, as explained in [I1].
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Among formulas , , , and , is proved in [26], and then proved in a
direct way in [19]. Formula is proved in [32]. Formulas (66)), and are conjectured in

[33, Section 1.4]. Note that in [33, Section 1.4], the notations A;_, gy and A, gy are described
but not precisely defined. From the context we figure out that

Ao—spm(0) = Apms2(—0) — 0%Xos0,  A1spm(0) = As11,0(—0) — °Xo>0.- (73)

Formulas and are special cases of Corollary (c) with wy = —w_ = § and (a) with
k =1 in Section And our argument in this paper is a strong support to the conjectural formula
(69).-

Remark 4. The method in our study of the discrete time TASEP, if applied on the continuous time
TASEP, that is, the ¢ — 1_ limit of the discrete time one, yields the counterparts of , ,
and with ¢ = 1, and then the formulas , , , and are derived directly. The
only technical obstacle in the application of our method in the continuous time TASEP is that the
counterpart of Proposition where the discrete geometric distribution of w(3, j) is replaced by the

continuous exponential distribution is not available in literature. We remark that the counterpart
of Proposition [2.4] can also be proved by the method in [26].

2.5 LPP with an inhomogeneous weight distribution

In this subsection we consider the point-to-point LPP on a Z? lattice where the weights on sites
are in independent geometric distribution, but with nonidentical parameters. The strategy is to
express the point-to-point LPP with respect to these weights by point-to-curve LPP with respect
to homogeneous weight as considered in Section

Let L be the vertical path (depending on N which we suppress)

L:={(0,y) |y € Dy}, where Dy is an interval on R. (74)

We are most interested in the case that Dy = R. But the LPP Gy n)(L) is not well defined in
this case, since Gy, N)(O, y) — +oo almost surely as y — —oo. We consider a modified LPP

Gl (L) = mavx (G ) (0,9) = fn(v)) (75)
where fy : Dy — R is a function where Dy, the domain of fy, is an interval. This modified LPP
G{]]\\} N)< ) is well defined for Dy = R if fy(z) — +oo fast enough as z — —oc.

By Proposition for y = ¢N where ¢ is in a compact subset of (—oo, 1), if fy(y) = ap(1 —
y/N)N, then Gy n)(0,y) = o(N). So if fn(y) is close to agN = ag(1)N for y around 0, and
otherwise greater than ag(1 —y/N)N for all y < N, then G{]]:’[ N)( ) is o(N)) and the value of y such
that Gy n)(0,y) — fn(y) attains its maximum in the vicinity of 0. To make the idea above precise,
we state a technical hypothesis for fy analogous to Hypotheses 2.5 and 2.7 First let C' € R,
c1 € (0,1), cg € (0,1/3) and ¢4 > 0 be constants, let £ : R — R be a continuous function and let

{mn} C Ry be a sequence of positive numbers such that is satisfied.
Hypothesis 2.10.

o There is an interval
In = (an,bn), (76)
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— N2 <an <by <N?, and any — aoo € {—00}UR, by — boo € {+00}UR, (77)

such that
Fn(2scoN?3) = agN — sagcoN?/3 — (U(s) + Iy (s))dg N/, (78)

for all s € In, where In(s) : R — R is any continuous function with maxscy, |In(s)] < mp,
and {(s) and my are specified in (21).

e Forally € Dy such that yN'/3/(2co) € (—oo, NY3/(2¢o)]\ In, fn(yN) satisfies the inequal-

ity
N a ?
%y) - (ao _ %y — ¢1do (2*7(’:0) , ap(l —y) + 04!y\> . (79)

Theorem 2.11. Fiz {(s) and a sequence of functions fn satisfying Hypothesis with constants
C,c1,ca,c4,c5,{mn} defined above Hypothesis|2.10 Then for all € there exists Ny (depending on
C,c1,c2,c4,c5,my but not £(s) or fn) such that for all N > Ny and all x € R,

GfN
P NN)S ) <z|-P ( max _ (A(s) — s2 4 {(s)) < 5L'> < €. (80)
boNg 86((1007b00)

Another similar question is to consider the L-shaped path
L={(0,y9) |y >0}U{(z,0) |z >0}. (81)

The LPP Gy, N)(~) is well defined and equivalent to the point-to-point LPP Gy n)(0,0). If

fn : R — R is a continuous function such that fN( ) increases at a proper speed as |z| increases,
then the modified LPP

GIN (L) = max <r5§5< <G(N,N>(0, y) — fN(y)) , max (G(N,N) (2,0) — fN(—l”))> (82)

has nontrivial limiting property like that of Gy (N N)(L) stated in Theorem [2.11} To make the idea

above precise, we state a technical hypothesis for fN analogous to Hypothesis 2.1OL First let C' € R,
c1 € (0,1), c2 € (0,1/3) and ¢4 > 0 be constants, let £ : R — R be a continuous function and let
{mn} C Ry be a sequence of positive numbers such that is satisfied.

Hypothesis 2.12.

o There is an interval
Iy = (an,bn), (83)

— N2 <any <by <N%, and any — G € {—00} UR, by — b € {+00} UR, (84)

such that 3
fn(2scoN?/3) = agN — |s|lageo N3 — (U(s) + Iy (s))dg N/, (85)

for all s € Iy, where In(s) : R — R is any continuous function with maxsery |In(s)] < my
and {(s) and my are specified in (21).

16



e For all yN'/3/(2¢co) € [-N3/(2co), NY/3/(2¢o)] \ In, fn(yN) satisfies the inequality

N e (v — 2 o (2) ot — it ). s6)
N 2 2cg ’

Theorem 2.13. Fiz {(s) and a sequence of functions fN satisfying Hypothesis with constants
C,c1,c2,¢4 and sequence {my} defined above Hypothesis . Then for all € there exists Ny
(depending on C,c1,ca,ca, {mn} but not £(s) or fn) such that for all N > Ny and all z € R,

szv (E)
P % <z|-P ( max (A(s) — s* + 5(5))> <€ (87)
bOJ\[§ Se(aocnboo)

As applications of Theorems and (or adaption of their proofs, see Remark , we have
the following results for point-to-point LPP with inhomogeneous weight parameters. The weight
parameters we will consider differ from the homogeneous ones considered in Section [2.1] in only
finitely many columns and/or rows. So we use the same notation G(N, N) which is defined in
and , but the weights on some of the lattice points are defined differently. To state the following
corollaries, we denote by A®) and A® two independent Airy processes that are the A described
in Section [2.6] and denote by By, ..., By independent two-sided Brownian motions that are the B

defined in .
Corollary 2.14. In the Z? lattice we consider the point-to-point LPP G(N, N), and denote

o _ GINN) —agN
N — bONl/S ;

where ag and by are defined in and respectively.

(88)

(a) Suppose the weights w(i, j) are independent and geometrically distributed with parameter o ;
such that o; j =1 —q ifi ¢ {1,2,...,k} and

2w; .
az’]_l_\/a<1_c10]\71/3> 'lf Z—l,...,k, (89)
where k € Z4 and w,...,w; € R are constants. Then

lim P(Gy <) =

N—o0

k k
P ( max (.A(Sk) + ﬂZ(Bz(Sz) — Bi(si_l)) — 4211)1'(81' — 31’—1) — Si) S ac) .
=1 =1

0=s0<s1<-<sg

(90)

(b) Suppose the weight w(0,0) is fixed to be 0, the weights w(i,j) are independent and geometri-
cally distributed with parameter o j if i,j are not both 0, such that o; j = 1—q if i, j are both
nonzero, and

2 s .
1-/4 1—% ifi>1andj=0,

1- g 1—% ifi=0 and j > 1.

Qij =

(91)
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where wy,w—_ € R are constants. Then

N—oo seR

lim P(Gy <z)=P <max (A(S) +V2B(s) + 4(wilsco — w_lgs0)s — 82) < x) . (92)

(c¢) Suppose the weight w(i,j) are independent and geometrically distributed with parameter «; ;
such that a; j =1 —q if j < [an] or j > [an] + k, and

2w

az',jzl—\/a<1—d]N[f;§]> if j=lon]+1,... [an] +F, (93)

where a € (0,1), k € Zy and wy, ..., w € R are constants. Then

k
lim P(Gy <z) =P ( max <a1/3A(1)(a_2/330) +v2) (Bi(si) — Bi(si-1))

N—o0 50<81<--<sp —1
1=

2 2
+ (1= a)BAD (1 = gy 4sz —si1) = 22— S’“) < x) (94)

« 1l -«

Remark 5. Parts[(a)] and [(b)] of Corollary are direct conseqeunces of Theorems and
respectively, but Part does not follow these theorems in a straightforward way, although the
proofs of the theorems can be adapted to prove Part

The limits on the left-hand sides of , and have been analyzed previously in [5],
[2] and [1], and the results were given in other forms by Fredholm determinants. Utilizing these
earlier results we arrive at the following expressions for these statistics.

Corollary 2.15. For all x € R,

(a) for all parameters wy, ..., w; € R,

k
P (Ozsoglagé% (A(sk) + ﬁzl(Bl(sl) —Bi(si-1) 42“’1 Si— Si—1) — 5%) < :1:) =
1=

F]:plked(x; 2u}17 ceey 2wk‘); (95)

(b) for all parameters a € (0,1) and wy,...,w; € R,

50<81<--<s

k
P ( max <a1/3_,4(1)(0é—2/380) + \@Z (Bi(si) — Bi(si—1)) + (1 — 04)1/3A(2)((1 _ ﬁ)_2/35k)
i=1

2 2
S S :
—4 E wi(s; — 8i—1) — 2 — ’“) < x) = FPRd (520, ., 2wy,),

(96)

(¢c) for all parameters wy,w_ € R,

ES

P <maﬂ§< (A(s) +V2B(s) + 4(wileco — w_lgs0)s — 32> < 37) = H(z;wq,w_), (97)

where sziked(x;wl,...,wn) is the distribution introduced in [2, Formula (54)] and [1, Corollary
1.3], and H(x;wy,w_) is the distribution function introduced in [5].
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2.6 The Airy process

The Airy process A(-) [30] (sometimes also denoted as As(-) and called the Airy, process, in contrast
to the Airy; process A; considered in ) is an important process appearing in the Kardar-Parisi-
Zhang universality class, see for example [13]. Its properties have been intensively studied, see for
example [26], [17], [33].

The Airy process A(+) is defined through its finite-dimensional distributions which are given by

a Fredholm determinant formula. For xg,...,z, € Rand tg < ... <, in R,
P(A(to) < o, .., Alty) < ) = det(I — /2 Kexif ) 120410 101 xR)s (98)
where we have counting measure on {tg,...,t,} and Lebesgue measure on R, f is defined on

{to, ... tn} x R by f(tj,7) = 1ye(a; 00) and the extended Airy kernel [30] is defined by

2 dNe M) Ai(E 4+ N) AL(E + N), ift>¢
0

Kex(t, & 1,€) = /
t(t,61,8) {_fooo d)\e—/\(t—t)Ai(g_’_)\) A"+ N), ift<t,

where Ai(-) is the Airy function. It is readily seen that the Airy process is stationary. The one
point distribution of A is the Fgug distribution (i.e., the GUE Tracy-Widom distribution [36]).

Since our main results appear as variational problems involving the Airy process, it is important
to know that these problems are well-posed with finite answers. It was proved in [30, Theorem 4.3]
and [26, Theorem 1.2] that there exists a measure on C(R,R) (continuous functions from R — R
endowed with the topology of uniform convergence on compact subsets) whose finite dimensional
distributions coincide with those of the Airy process (i.e., there exists a continuous version of the
Airy process). Further properties of the Airy process were demonstrated in [I7]. We summarize
those properties which we will appeal to. Part @ of Proposition is a special case of [17,
Proposition 4.1], (our A(t) is their A;(t)), while Part[(b)|is a generalization of [I7, Proposition 4.4]
where the parameter c¢ is taken as 1, and the proof can be used for our generalized case with little
modification.

Proposition 2.16. (a) (Local Brownian absolute continuity) For any s,t € R, t > 0, the measure
on functions from [0,t] — R given by A(- + s) — A(s) is absolutely continuous with respect to
Brownian motion of diffusion parameter 2.

(b) For all positive constants o and ¢ such that a < ¢, there exists € > 0 and C(a,c) > 0 such
that for allt > C(a,c) > 0 and © > —at?,

P( sup (A(s) —cs®) > ) < emelet®+2)
sE[—t,1]
One direct consequence of Proposition [2.16|is the well-definedness of the limit distributions in
Theorems and

Corollary 2.17. Let £ : R — R be a continuous function that satisfies and (aoo, boo) be an
interval such that —00 < aso < bos < 400. Then maxse (g by (A(s) — (s — 0)? +£(s)) is a well
defined random variable.

3/2

(99)

The definition of the Airy process given by is not well adapted to studying variational
problems (as it only deals with finite dimensional distributions). Let us note that [19, Theorem 2]
provides a concise Fredholm determinant formula for P(A(s) < g(s) for s € [¢,r]), for any interval
[¢,7] and any g € H'([¢,7]) (i.e. both g and its derivative are in L2([(,7])). As we do not utilize
this formula, we do not restate it here.
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2.7 Main technical tools

The main technical tools in this paper are results stemming from the uniform slow decorrelation
property that allows us to generalize Proposition by Johansson, and the Gibbs property of a
multilayer line ensemble extension of the LPP model. As this will require some explanation, we
delay a discussion of it until Section [6]

Recall the stochastic process Hy(s) defined in . We define more generally

ﬁN@):lm;mw<G<N+%N@ﬁNa+smAﬂBJV+£N@ﬂW1—smAﬂB>—alekﬁdgNuo,
(100)
where a € [0,1) is a parameter and ¢y (s) is a sequence of continuous functions such that the curve
L = ({n(s)N® 4 scoN?/3 Ln(s)N® — scgN?/3), (s € R) is a lattice path.
If a = 0 and £y (s) = 1°(s/(coN?/3)) where [°(s) is defined in (15), then H(s) is equal to Hy/(s)
defined in ((L6)).

Theorem 2.18. Let Hy(s) be defined in with a € (0,1) and £y (t) continuous on [—M, M|
and maxe(_pra [Un(s)] < C for all large enough N. Then Hy(s)—Hn(s) converges in probability
to 0 in C([—M, M],R), that is, given €,§ > 0, there is an integer Ny that depends only on M, «
and C' such that

P (SE[IE?Z(M]HN(S) Hy(s)| > 5) <€ (101)
if N > Np.

The slow decorrelation property is a common feature in many models in the KPZ universality,
including the LPP model, and equivalently the TASEP model, considered in this paper. As a
pointwise property, it is studied first in [20] and then comprehensively in [15]. Let M — 04, then
we have the result that as N — co, N~Y/3(G(N, N) —agN) is equal to N~V/3(G(N 4+ £y (0) N, N +
In(0)N) —ag(N + x5 (0)N®)) in probability. This is a special case of the slow decorrelation result
obtained in [I5], where the charasteristic line is the 7/4 radial line. Theorem generalizes the
pointwise slow decorrelation to be uniform on an interval.

Theorem m gives control of Hy(s) in any fixed interval [~ M, M]. Outside this fixed interval
we need the following lemma to control the point-to-curve LPPs by point-to-point LPPs as shown
in Figure The lemma is a special consequence of the Gibbs property (see Section @, but it
suffices for our paper.

Lemma 2.19. Suppose N >0, K1 < Ko < K3 are integers between —N and N, and My, My, M3
are real numbers such that (Kq, M), (K2, Ms), (K3, M3) are colinear, i.e.,

My — My My — M;s

= . 102
Ki—-Ky Ky— Kz (102)
Let c € (0,1) be a constant and let 1°(s) be defined in (15]). Then
P < max G(N +1°%s) + 5, N +1°s) — s) > M0>
Ki1<s<Ka—c(K2—Kj)
) (103)

< (2 + €min(e(Ka—K1),K3— k) )P(G(N + K2, N — K3) > Ma)

+P(G(N + K3, N — K3) < Mj),

where for all t > 0, € is a positive constant such that ¢, — 0 as t — oo.
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(N+K1—C(KQ—Kl),N—Kl—‘rC(KQ—Kl))

(N+K27N_K2)
(N+K3,N—K3)

Figure 4: The points (N + K;, N — K3), (N + Ko, N — K3) and (N + K3, N — K3) are on the
same diagonal lattice path. The left-hand side of (103]) is the LPP between the point (0,0) and the
lattice path between (N + K1, N — Ky) and (N + K; — ¢(K2 — K3), N — K1 + ¢(Ky — K1)), shown
in solid.

3 Proof of Theorems [2.6], [2.8], [2.11] and [2.13

In this section, we give the detail of the proof of Theorem [2.6]in Section [3.1] and show briefly that
Theorem [2.8] can be proved by the method the same as the proof of Theorem [2.6] in Section

The proofs of Theorems and (as well as the proof of Corollary [2.14(b)) are by the same

method with some adaptions, and we discuss it in Section

3.1 Proof of Theorem [2.6]

By the translational invariance of the lattice, we can shift the point (N + [oco N3], N — [ocgN?/3])
into (N, N), and thus if we can prove Theorem in the special case that ¢ = 0, the general
case is proved by shifting the lattice. Therefore, we only prove the ¢ = 0 case of Theorem for
notational simplicity.

In the proof of Theorem we suppose z is a fixed real number and the constants C, c1, ca, c3
defined in f are fixed. Without loss of generality, we prove only for the case that Iy, the
interval defined in Hypothesis is [N, N%]. By , we only need to consider the curve
(Ly N (—=o00,N) x (—o0,N)) where Ly is defined in (21)-(29), and we divide it into into parts
Lo (M), LSOH (M), L@ (M), and L, where the first three depending on a constant
M > 0, such that, recalling that L™ defined in (22)),

LR (M) = {(2,y) € L& | |z — y| < 2MeoN?/3), (104)
LYEOH (M) = {(z,y) € L™=\ LY°(M) | = < 0}, (105)
LR (M) = {(,y) € LG\ (M) | 2 > 0}, (106)
L0 — ([n 1 (=00, N) X (—o0, N)) \ Lsgnral, (107)
In Subsection [3.1.1] we show that for any fixed M > 0 and € > 0,
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for all N large enough, independent of the particular formula of ¢(s). In Subsection we
show that for any fixed € > 0, there is an M such that for all IV large enough, independent of the
particular formula of ¢(s),

p (G(N,N) (LN™"(M)) — agN

A N1/3 > x) <e€ forx=LorR, (109)
0

and for any fixed € > 0, for all N large enough, independent of the particular formula of £(s),

G(N,N)(LI]{I/&CTO) —agN
P ( N1 > x> <e. (110)

Thus by the three inequalities (108)), (109) and (110)), and the limit identity

lim P ( max (A(s) — s>+ £(s)) < x> =P (max (A(s) — s>+ £(s)) < x> (111)

M—o0 s€[—M,M] seR
that is a consequence of Proposition [2.16(b)l we prove the inequality of Theorem

3.1.1 Microscopic estimate

In this subsection we prove that the inequality holds for large enough N, where M > 0 and
€ > 0 is a constant.

The main technique to prove is Theorem Since Theoremrequires a boundedness
of {n(s), we first prove under the condition

l < N<, 112
max () (112)

Recall the stochastic processes Hy(s) defined in (16]), and Hy(s) defined in (T00). By the
symmetry of the lattice, we have that

G micro —3a ~

where Hy(s) is defined with £ (s) = £(s) + Ix(s) and the parameter a = 1/3.

Since Hy/(s), as a stochastic process in s € [-M, M], converges weakly to A(s) — s% and Iy (s)
uniformly converges to 0, with the help of Skorohod’s representation theorem, we have that for any
€ > 0 there is a § > 0 such that for large enough N independent of ¢(s)

P <Semax (Hn(s)+ (U(s) +In(9))) <z + g) <P < max (A(s) — s? + U(s)) <z + 5) + 57

[—M,M)] SE[—M,M] 3
(114)
(10 54) - <0, 0 09 52-2).
(115)
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By Proposition [2.16(a)], the Airy process is locally like the Brownian motion [I7], so if ¢ is small
enough, then

P (se[rilz?/l},(M] (A(s) — s>+ 4(s)) <z + 5) —-P <S€[r£1]z\14>fM] (A(s) — 82+ £(s)) < x) < %, (116)
P <s€{£1]e\x4)fM] (A(s) — 2+ £(s)) < x> —P (sG[IEl}E\i/[),(M] (A(s) —s* +4(s)) <z — 5) < % (117)
The uniform slow decorrelation of LPP given in Theorem [2.1§ implies that
P( max | Aw(s) ~ Hy(s) S0 <€ (118)
s€[—M,M] 2 3

for large enough N, independent of the particular formula of £(s) and Iy (s), as long as £(s) satisfies
(T12).

The inequalities (116[), (117]), (114)), (114]) and (118]) yield (108) for all I(s) satisfying both
and (112]). For large enough N independent of I(s),

LmicroM _ N
p ((Coem (LR(0) —a0N
doNs3

_ < max (ﬁN(s)—i—(f(s)—l—lN(s)))Sx)

<P (SEP%M} (Hn(s) + (€(s) + In(s))) <z + g) +§
<P <S€Ern]f\%4>’<M} (A(s) — s% + I(s)) <z + 5) + %
<F <56E12\1/[),(M} (A(s) = s> +1(s)) < a:) +e€

(119)

Thus one direction of inequality (108]) is proved under the condition ((112)). The proof of the other
direction of ([108]) under the condition (112} is similar.
Finally note that the condition implies (112)) for large N. Therefore (108)) holds for all £(s)

that satisfy .

3.1.2 Macroscopic and mesoscopic estimates

Macroscopic estimate Inequality (110)) is a direct consequence of Lemma For any (x,y) on
L. Since (N 1z, N~ly) € D by where D is defined in , and Ly satisfies the relation
, by Lemma we have that for all N large enough,

G(N,N)(xa y) — aoN _eN2¢2
P < AN/ > x) <e , (120)

where ¢ > 0 depends on c3 in but not the shape of Ly**™. Note that G|y, (7, ) is a constant
for (z,%) in a lattice square, and there are fewer than 4(1 4 ¢~1/2)2N? lattice squares whose image
under the scaling transform (x,y) — (N~'z, N~1ly) is in D. Then we can pick (z;,y;) on L™macro
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where i = 1,...,[4(14¢/?)2N?], such that for all (z,y) € L™, G(n,n)(7,y) is equal to at least
one Gy, n)(%i,y:). Thus

[4(1+q~ /)2 N?]

G v (L) — agN G v~y (@i, yi) — aoN
P < TN > x> < Z; P < LN > x>

(121)
< 4(1+ g V2)2N2e N

and obtain inequality (110]) if N is large enough.

Mesoscopic estimate By the symmetry of the lattice model, we only need to prove (109) with
* = R.

Before giving the proof, we remark that the simple approach in the macroscopic estimate fails
in this case, since summing up all the point-to-point LPP between (N, N) and lattice points on

Lmeso,R meso, R

N (M) gives a too large upper bound of the point-to-curve LPP Gy n)(Ly~ 7). Before

giving the technical proof, we explain the idea. We divide LEeSO’R into segments according to the

intervals I(k) in (125). Then on each segment, we estimate the point-to-curve LPP (actually the
upper bound P(k) defined in ) by the point-to-point LPPs between (0, 0) and the two points in
and . We estimate the point-to-point LPPs by Lemma and the relation between
point-to-point LPPs and the point-to-curve LPP is established by Lemma

Recall that L%QSO’R(M ) € Lsentral is defined in by a continuous function £(s) + In(s) for
s € [M,N] | where {(s) is bounded below by C + c1s% and Iy(s) converges uniformly to 0 as
N — 00. By the inequality , we have that

((s) < ¢js® for all s € [M, N, where ¢; € (¢1,1) and M = /C/(c, — c1). (122)
Then we take 9
e (1, —). 12
cle(7l+c/l) ( 3)
Since z is a constant, it suffices to prove the inequality
P <G( Ny (LT (M) > agN — c’l(c’l’)2M2d0N1/3) <e (124)
for all M > M and large enough N.
For all £ =0,1,2,... we denote
c(k) = (¥, Cp=d(c(k)M)?, and the interval I(k) = [c(k — 1)M, c(k)M], (125)

and define the lattice paths

L(k) = {(scoN*/* = lp(scoN?/?) — [Crdo N3], —scoN?/® —ly(scoN?/?) — [CrdoN/?)) | s € I(k)}.

(126)
Since on each I(k), £(s) < Cy as long as £(s) is defined, and ¢, (c])?M? < Cy for all k, it is clear
that if we denote

)

P(k) = P ((Gowm) (L(K)) = 20N = CpdgN'/%) ) (127)
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then as N is large enough,
P (G(N,N)(LEeSO’R(M)) > aglN — 0'1(0’1’)2M2d0]\71/3>

<P L(k)) > agN — CpdgN/3
N <1Sk§[logl]%§2/logcl](G(NJV)( ( )) Z ag Crdo ))

llog N<2 /log c1]

< > P(k).

k=1

(128)

To estimate P(k), we note that by the choice of ¢/ in (123)), there exist 1,2, 3,04 > 0 such that
09 < 63 and the points

(1,c1(e)?), (461, (1= 8)(f +61)%),  (¢] + 62, (14 8a) (¢ + 62)?) (129)
are collinear. Then by a simple affine transformation, the points
(N +e(k — 1)McoN?/3, agN — de0N1/3) :
(N + (e(k) + die(k — 1))McoN?3, agN — (1 — §3)(1 + 52/c’1/>2ckdozvl/3) . (130)
(N + (k) + dae(k — 1))McoN?3, agN — (1 4 84)(1 + 8 /cg')2ckd0N1/3)

are collinear, as well as the three points

<N + [elk — 1) McoN?/3], agN — deoNl/?’) , (131a)
<N + [(e(k) + d1e(k — 1)) McoN?), agN — (1 — 63 x4) (+61 /c’Q’)QdeoNl/3> , (131D)
(N F[(e(k) + Saclk — 1)) McoN?3), agN — (1 + d4)(c(k) + 62)2M2dgN1/3) (131c)

collinear, where 63 y  — 03 as N — oo uniformly in k. We only need that for NV large enough

03Nk > %3- (132)

Then by using the symmetry of the lattice and applying Lemma we have

[e(k)McoN2/341]
max

P(k) <P ( G(N + [CrdoN'3] + 5, N + [CrdoN'/?] — 5) > agN — ¢} (c(k) M >2doN1/3)

s=[c(k—1)McoN2/3)
<(2+ Emin(61,52—61)-c(k—1)Mc0N2/3)P(G (N + [Crdo N3] + [(c(k) + d1c(k — 1)) McoN?/?],
N + [Ckdo N3] + [(c(k) + Src(k — 1))MCON2/3]) >agN — (1 - 83 n5)(1+ 61/c’2’>20kdoN1/3>
+ ]P’(G (N + [Cedo N3] + [(e(k) 4 dac(k — 1)) McoN?/3],

N + [CrdoNY3] 4 [(c(k) + dac(k — 1))Mc0N2/3]) <agN — (1 +64)(c(k) + 52/c’2’)26’kd0N1/3> :
(133)
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where the term € 2 is defined in Lemma and vanishes as N — oco. An
min(d1,d2—081)-c(k—1)McoN3

application of Lemma shows that
P(k) < e~ Mk (134)

for large enough M. Thus (124) is proved by taking the sum of P(k) in (128]).

3.2 Proof of Theorem [2.§

Using the representation of TASEP by the LPP model, and Remark [2] in particular, to prove
Theorem [2.8] we need only to compute the N — oo limit of

P( >(kN+Uc0N2/3—d3N1/3x,N—ocoN2/3—d(’;Nl/?’x)(L*N) < [aéN]) : (135)

Thus Theorem 2.8 can be proved by the same method as the proof of Theorem [2.6] since the
estimate of the LPP associated to the TASEP differs from the LPP model in Theorem [2.6] only by
a constant shift at each lattice site. In fact, the theorem follows as a corollary of Theorem [2.6]

3.3 Proof of Theorems [2.11] and 2.13]

For the proof of Theorem [2.11] we assume Dy = R without loss of generality. We express

G (1) = s (G0 G0 G0 3
where
G{]]\\;jv)(L) = Iynealx (Gw,n)(0,y) — fn(y)), * = micro, meso or macro, (137)
and, letting M > 0,
[—M2coN?/3, M2coN?/3] for * = micro,
I, = [—2C()]\72/3-‘1-C27 2C0N2/3+62] \Imicro for x = meso, (138)
(—OO, N] \ (Imicro U Imeso) for * = macro.

Similar to the proof of Theorem [2.6]in Section [3.1 we show that for any fixed M and e > 0,

GfN,micrO(L) . a()N
(N,N) <z|_p (

by N'1/3 max (A(s) — $2 + {(s)) < x) <e€ (139)

s€[—M,M]

for all N large enought, independent of the particular formula of fn. Then we show that for any
fixed € > 0, for all N large enough, independent of the particular formula of fy,
GINRT(L) — apN
bo N1/3

>z | <e, (140)

and at last show that for any fixed € > 0, for all N large enough, independent of the particular
formula of fu,

GINIO(L) — agN

bONl/S

>z | <e (141)
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Thus we prove Theorem [2.11]
To prove (139)), we note that by the symmetry of the lattice,

GIvmiero(ry _ a0 N
(N,N) - <
EIS

by N1/3 max  (Hy(s) + £(s) +In(s)) < :L‘) , (142)

[_MvM]

where Hy(s) is defined in (100)), with o = 2/3 and £ /(s) = cos. Then using the convergence results
in Theorem and Proposition we derive by the argument similar to those in Section
BII

To prove (140)), we use a simple inequality that for any lattice points (zo,yo), (z,y) and (z/,y’)
such that zo > x > 2’/ and yo > y > v/, we have

G(:I:O,yo)(xa y) < G(Io,yo)(x/7 y/) - G(z,y) (1'/, y/)- (143)

Now we take (z9,y0) = (N, N), (z,y) = (0,s) where the integer s € Ieso and corresponding to
(z,y), with the same s,

(@) = (=[McoN?/3] — s —[McoN?/3) + 2) if s is even, (144)
’ (—=[McoN3) — 251 —[McoN?3] + =£1) if s is odd.
It is easy to see that if we prove that if M is large enough, then for all large enough N,
P < max G(N,N) ($l, y,) >agN + aoMCON% + {L‘boNl/3> < E, (145)
s€Z and s€Imeso 2
and uniformly for all s € Z N Inego, if N is large enough,
PGy (@ y) <aoMeoN*3 — fy (—5 ) <61 (146)
(2g) 2 Y ) = 2074C0 N\ 2¢oN2/3 2 4coN2/3+er’

then ([140)) is proved.
The inequality (145) is analogous to (124) and can be proved by the arguments used in Section

The inequality is a direct consequence of Proposition [2.1{b)l Then the proof of Theorem
[2.11]is complete.

To prove ([141)), we estimate the probability that the point-to-point LPP P(G(n,n)(0,5)—f(N) >
bo N/ 3r) by Lemma for all s € Z N Iiacro, and then sum up all these probabilities as an upper
bound of the left-hand side of . The argument is similar to the proof of and the detail
is omitted.

The proof of Theorem is similar. We divide the L-shaped path L defined in into the

“micro”, “meso” and “macro” parts according to the distance to the corner (0,0), and use the three
methods to estimate the point-to-curve LPP between (NN, N) to them, as in the proof of Theorem

2111 We omit the detail.

4 Proofs of Corollaries 2.9 and [2.14

4.1 Proof of Corollary [2.14{(a)| and |(b)|

Parts [(a)] and [(b)] of Corollary are direct consequences of Theorems and respectively.
We only give detail of the proof of part @, since that of part @ is similar.
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Define the random function f(x) on the domain D = [0, 00) by
f() = —Gk - 1,2) (147)

where the weight on the lattice is assumed to be inhomogeneous and the weights w(i,j) with
i =1,...,k are specified by . Then the point-to-point LPP G(N, N) is expressed as

G(N,N) = maX]G(NN)(k ,x) — f(x). (148)

z€[0,N

We see that the G(N, N) on the lattice with inhomogeneous weights has the same distribution as

G{ka ) (L), where the notation is the same as in Theorem [2.11, As N — oo, we have (G is

defined in (B8))

. GI o (L) —agN
lim P(Gy < )= lim P 0 ()

N N boN1/3 x| . (149)

Although the random function f(z) is not in the form of fy(z) in ., the different is only a
constant term. We write for any N

f(2sc0N%) = —sagcoN 3 — E(N)(s)doN%. (150)
For any € > 0, by choosing the constant C' properly, the inequality

1
(WN)(s) < C + 552 (151)

is satisfied in probability at least 1 —e. So by Theorem [2.11] given any e > 0, for large enough N

G! (L) —agN
(N,N)( ) 0 <z —]P’(

by N1/3 max <A(s) — s+ g(N)(3)> < 3:> <. (152)

s€(0,00)

Furthermore, it is not hard to see that the random function ¢V )(3) converges weakly to

k
\@Z(Bl(sl) —Bi(si-1) 4Zwl Si — Si—1) —si (153)
=1

on any compact interval. At last, the weak convergence of [(V )(s), together with the estimate (|151))
and Proposition [2.16(b)} implies that

lim IP( max (A(s) — 5% + M) (s)) < :n) _

N—oo s€(0,00)
k
2
. . _ _ < .
P (0:SO<S{2§L.)_(<S]C<M (.A(sk) + \/521 (Bi(si) — Bi(si—1) 4sz Si — Si—1) sk> < x)
1=

(154)

Combining ([149)), (152)) and (154]), we prove Corollary
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4.2 Proof of Corollary [2.14(c)|

Let the weights w(3, j) be defined as in Corollary Define the stochastic processes By v, ..., By n

as

By w(s) s (Glanysifony) ([@N] + i, N + 2¢oN¥s) — agegN/3s) il s > 0, (155)
i,N(S) = . , 2 .
W —G([QN]+i’[aN])([aN] + 1, alN + 200N§8) - aocoN2/3S> if s <0.
Then we have the weak convergence
Bin(s) = V2Bi(s) + dw;s (156)
on any compact interval as N — oo, where Bi(s),...,Bg(s) are independent two-sided Brownian
motions.
Next define the stochastic processes
AV (g = 1 (G([aV], [al] — 260N*/35) — ag(al — coN*/%s)) (157)
N b0N1/3 9 9
@y — 1 2/3 2/3
AV6) = g (G(N,N)([aN] + k41, [aN] + 2¢oN?/3s) — ag(aN — coN? s)) . (158)

By Theorem and Proposition we have the weak convergence that on any interval [—M, M|
as N — oo

82

AR (5) = oM PAW (@) = = AP () = (1 - a)PPUP (1 - a)s) -

1
S )

where AV (s) and A®)(s) are two independent Airy processes.
We denote the three regions of RF*!

Ri(M) ={(80,815---y8k) | —M < s9g <81 <+ <5, <M},
RQ(M):{(So,Sl,...,Sk)|80§51 <<, <M and 80<—M}, (160)
RQ(M):{(So,Sl,...,Sk) | —M<sp<s1<---<sp and Sk>M},

and write

G(N,N) — agN
by N1/3

= max <G§\1,)(M), Q). Ggi)(M)) , (161)
where for i = 1,2, 3,

GO () = ! max ((;([am, [aN] + [2coN?/350])

N b0N1/3 (50,---s5K)ER; (M)

k
+ Z G([aNHz',[zcoNZ/:ﬂsi,l])([QN] +1, [QCONQ/gsi])

i=1

+ Gn,ny ([aN] + K + 1, [2coN?/35;]) —a0N> (162)
2coN2/35 ] [2¢ N2/3g4 ]
= AW ([2coN"so] ) @) ([2c0N 5]
(so,...,gcl?é(Ri(M) ( N ( 2C0N2/3 T N 2C0N2/3

k
~ [2C0N2/3SZ‘] ~ [2C0N2/3SZ‘_1] -1
B,y | =) - B .
* ; ( N ( 200N2/3 N 2C0N2/3
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It is a direct consequence of the convergence results (156) and (159) that for any M >0

(1) _ 1/3 4(1)(,—2/3 e
]\}E)noop (G ( ) = x) =P (—M<So<r£ag.(.4<sk<M ( A ( SO - \[Z Bz(sz_l))

=1

« 1—«a

2 2
+ (1—a)BAD (1 - )23, 4sz 8i— si_1) — 20 _ S’“) < a:) . (163)

To estimate G%)(M ), we recall the Hypothesis for Theorem and define the function
(cf. with ¢ =1/2 and ¢4 = 1/100)

Ly(xz) = N max (ao — aoa;/N — %do <$2/c]:>2’ ao (1 — 2) 00 ’ND (164)

and then the function depending on a constant K to be determined below by (171f) (cf. with
C=K and c; =1/2)

52 1

27 q,N3

N (s) = max (K +
0

2 2
<a0N — sagcoN3 — Ly (2scoN3 ))) ) (165)

Then we have P (Gg\%) (M) > :L') < Py + Py + P3 + P4 + P5, where

2coN?/3s
fr=F (Jﬁax AV <[220N?/30]> > —al (e 380)) , (166)
200N2/3Sk max _
P2 = (skeR\ G A <[2C0Nz>/3] > —(1— ) B ((1 - )P | (167)
[2C0N2/38k]
= — | =
Pl AN( s ) 25 ). (168)
P k B, [2coN?/35;] B [2coN?/3s; 1] — 1 o 13 pma 23 .
= é“a%; Zl PN\ TNz | T PN N3 > o' Beps(amPs0) — K+ |
so<—M, =
Skg[—M,M}
(169)
k
. [2C0N2/3Si] 3 [2C0N2/35i,1] —1
( e (B“N <20N2/3 B T e
so<—M, 1=
|si|€[M,(1—a)N/(2coN?/3))

> V3 (M 350) + (1 - a) B (1 - ) sy) + | . (170)

30



Now we assume € > 0 is a small constant. By the property of the Airy process in Lemma [2.16] and
the convergence , we have that there exists an K > 0 depending on € such that for all interval
[—M, M], the inequality

P3 <e. (171)

As in the proof of Theorem we have that if M is large enough, then for all large enough N,
P < €, Py < e. (172)

Also By standard argument for random walk, we find that if K depends on € as in (171]) but not
M, and M is large enough, then for all N large enough,

Py <e and Pj<e. (173)
Hence we conclude that if M is large enough, then for all N large enough,

P (GE@)(M) > ac) < 5e. (174)
By a parallel argument, we have that if M is large enough, then for all N large enough,

P (GSS;)(M) > x) < Be. (175)

Finally, by (163]), (174]) and (175]), together with the result that is a consequence of Proposition

lim IP’( max ( 1/3 () (a™ so +[ZB (si) — Bi(si-1)

M—o0 —M<sp<s1<-<sp<M

2 2
+(1—a)PAD((1 =)~ 3s) —4sz Si — Si—1) 50—8k> §x>

« l1—«
. (176)
_ AW (2 (o) — B.(s
- <OO<SO<I§112?S.<51¢<°° (ONA (a 580) ! \@z;(BZ(SZ) B’(S“l))
1/3 4@)((1 —2/3 4 55 Sz <
+(1—«a) ((1— Sk) — Zwl Si — Si—1) % " 1-a <z,

we prove part of Corollary

4.3 Proof of Corollary

Since all the five parts of the corollary are similar, we only prove part @ and the proofs to the

other four parts are analogous or easier.
The random function aflat/Bern iy defines a random polygonal chain Lflat/Bern hy , we
define a function /(M) (s) associated to it by the relation

Liat/Bern — f5eo N2/3 — (N (§)dENY3, —scoN?/3 — i) ()dEN3) | s € RY. (177)
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Then /(M) (s) is a continuous function such that it is deterministic for s < 0 and random for s > 0.
It is clear that for s > 0, ¢V )(s) is mapped to the path of a simple symmetric random walk, such

that i
k
<2d;§N1/3£(N> <2c0N2/3> k= 1,2,...> ~ (ZX k= 1,2,...) , (178)
=1

where X; are in i.i.d. distribution with P(X; = —-1) =P(X; =1) = 1/2.

Now we let ¢; = 1/2, ¢ =1/6, ¢§ = 1/100. We have that for any ¢ > 0, there is a large
enough constant C, such that if we let C = C, and ¢y, ¢a, c3, ¢4 defined above, then in probability
greater than 1—e, inequality is satisfied by £(N)(s) on [~ N, N°2] and conditions and
for L* are also satisfied by L2t/Ber - To check it, we note that the part of L where the z-coordinate
is negative does not violate inequality , and , while or the other part of L, we simply
use the property of simple symmetric random walk.

By Theorem we have that if the coefficients C, ¢y, c2, ¢ are chosen as above, then for large
enough N

hﬁat/Bern 9 Ng. *NY — 9N
P (20¢ 31’ 3N) >—z|-P <max A(s) = (s —0)2 +1W)(s) < .’L‘>
2d6N§ s€R

<€, (179)

where A(s) is an Airy process.

It is clear that as N — oo, on (—o0,0], V) (s) uniformly converges to the constant function
0. On the other hand, for positive s, by the correspondence and Donsker’s theorem, /(M) (s)
weakly converges to v/2¢~'/*B(s), where B(s) is a standard Brownian motion and the constant

factor is the ratio
\/5 _1/4 o AV 2C0N2/3
T T arNB

by and (48). By argument like that between (152) and (154)) in the proof of Corollary [2.14f(a)]
we prove part @ of Corollary

(180)

5 Proof of Theorem 2.18|

Let C\ = [(C' + 1)N®]/N® which depends on N and lies in the interval [C, C + 1]. Define

1 a « « «
Hy+(s) = g (G (N + 20 N° + scoN?/3, N + 204 N° — sc0N2/3> —ag (N £ 204N ))
(181)
for all s € [-M, M]. It is a direct to check that
Hy(s) = (1+ 20NN Hy oo e (s + O(NOT)) (182)

where the term O(N%1) is independent of s.
We first prove the following claim.

Claim 5.1. For any given €,6 > 0, there exists a constant N1 which only depends on M,« and C
such that

o €
— > —
P <Se[rzla)7{ }|HN¢(S) Hy(s)| > 2) <3 (183)

for all N > Nj.
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To see this we first note that Hy(s) is tight (see [26] Lemma 5.3.]), i.e., there exist constant
§’ > 0 and N{ > 0 which only depend on M, e and ¢ such that

P(, ()~ Hx(s)l 2 7)<

[s1],]s2|<M,|s1—52|<6’

g (184)
for all N > Nj.

The relation (182 implies that Hy +(s) are also tight. Therefore there exist constant 6” > 0
and N{ > 0 which only depend on M, e and § such that

% (185)

)
P H - H > ) <
<|51|7|52|<$ﬁi_52|<5"| N+ (s1) N+(s2)] > 6>

for all N > Ny.

Now we fix ¢’ and ¢”, and denote ¢t; = j - min{¢’, 8"} for all integers j such that —M < ¢; < M.
By the slow decorrelation of LPP (see, [15, Theorem 2.1]), we know that there exists some constant
N7” which depends on C, ¢, 6,4’ and 6" such that

1) €

H t:)—Hn(t:))] > =) < = 186

(MSIjI-rrnIill?ff%’,é”}SM‘ wax(ty) = Hn (1) 2 6) 6 (180)
for all N > Ny{".

Note that for all s € [-M, M], there exists some j such that [t; — s| < min{d’,6”}, and that
[Hyx(s) = Hy(s)| < [Hnx(t;) — Hn ()| + [Hy£(s) — Hy £ (t5)| + [Hy(s) — Hy(ty)].  (187)

Together with (184)), (185)) and ({186)) we obtain Claim
Now we prove Theorem 2.18L Note that for s € [—M, M] such that scoN?/® € Z we have

G (N + 200 N + scoN2/3, N + 20\ N — sc0N2/3)
ye (N +1n (s) N® + scoN?/3 N + Iy (s) N® — sc0N2/3)

= G(N+2C§VN°‘+scoN2/3,N+ZC’§VN&—SCON2/3) (N +In(s) N* + SCON2/3, N+Iy(s) N* — 5C0N2/3>
(188)

which has the same distribution as G ((2C% — In(s)) N, (2C% — In(s)) N®). If a > 1/3, by ap-
plying Proposition [2.1(b)| we obtain the following estimate

= ) INl-a
P (HN,+(5) — Hy(s) < —2> <e N (189)
for all N > NJ, where ¢/ and N} are positive parameters independent of s. If a < 1/3, we have

P (HN,+<5> () < g) <P (HN,+<8> () < §N<3a—2>/6) S (90)

By applying Proposition [2.1[(b)| again, we obtain

v <HN,+<s> ~ Hy(s) < ~SNE2 6) < e (191)
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for all N > NJ/, where ¢’ and NJ are positive parameters independent of s. Therefore we still have
the estimate (190) with ¢ and N} replaced by ¢’ and NJ. By combining the above two cases we
have

~ (5 /11 aymin{l—o,a
IP’( max (HN(S) —HN7+(8)> > 2) < Z g Nminlim e/} (192)

€[—M,M],scoN2/3€Z
sl Jiseo s€[—M,M],scoN2/3¢Z

for all N > NJ' = max{Nj, NJ'}, where ¢ = min{¢/, ¢’}. Note that the above estimate includes all
the lattice points on the path {(N+scoN?/3, N—scoN?/3) | s € [-M, M]}. Similarly one can obtain
an analogous estimate including all the lattice points on the path {(Ix(s)N® 4+ scoN?/3,Ix(s)N® —
scgN?/3) | s € [-M, M]}. Moreover, the right hand side of the estimate tends to zero as N — oo
since there are only o(N) terms in the summation. As a result, there exists an integer Ny which
depends on M, C, e, and § such that

| s

P max (ﬁN(s) - HN7+(S)) >

se[—M,M],
lattice points

< (193)

DN

for all N > Ny, where the maximum is taken over all the s € [—M, M] such that (scoN?/3, —scoN?/3)
or (IN(s)N® + scoN?/3,Ix(s)N® — scoN?/3) is a lattice point. One can remove this restriction by
using the definition of Hy and Hy 1, and replacing the value of G at an arbitrary point by the
interpolation of that on two nearby lattice points. Therefore there exists an integer No which
depends on M, C, € such that

P (se[@%m (ﬁN(s) - HN,+(S)) > g) < g (194)

for all N > Ns.

By combing this estimate and Claim [5.1] we immediately have

P ( max (ﬁN(s) - HN(S)) > 5>

s€[—M,M]
. ) o (195)
< — > - _ > 2
<P (L (A~ Hvalo) 2 5 )+ P (e (Hyo) - Hin(9) = 5
<€
for all N > max{Ny, Na}.
Similarly, there exists an integer N3 which depends on M, C, e and § such that
~ 1) €
P (se[lfl?fm (HN,,(S) - HN(s)) > 2) <3 (196)
for all N > N3. By combing this estimate and Claim we have
P Hy(s)— H > 6
(se[%fm (ns) = () > )
(197)

o g -2 8) o, -0 ) =)

<€
for all N > max{Nj, Na}. Theorem follows immediately by taking Ny = max{Ny, No, N3}.
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6 Gibbs property of multi-layer discrete PNG and proof of Lemma
2.19i

The goal of this section is to prove Lemma|2.19, The proof relies on the correspondence between the
LPP model and the multi-layer discrete polynuclear growth (PNG) model. The essential ingredient
of the proof is the Gibbs property of the multi-layer discrete PNG model, analogous to the Gibbs
property of the nonintersecting Brownian motions studied in [I7]. We describe the multi-layer
discrete PNG model and its relation to LPP, following closely to the presentation in [26], to facilitate
the proof. Then we prove Lemma based on technical results in Lemmas and The
strategy of our proof is similar to that of [I7, Lemma 5.1].

The multi-layer PNG model can be expressed in terms of the trajectory of particles on Z
conditioned to be non-colliding. The dynamics of a single particle follows a particular form of
random walk, such that the particle jumps at integer time ¢, in the way that in even time ¢, it can
only jump in the positive direction, and at odd time ¢, it can only jump in the negative direction.
At any integer time t, the movement of the particle is

P(the particle jumps k steps) = (1 — /q)(v@)*, k=0,1,2,..., (198)

and the steps are upward or downward depending on the parity of t. We call a particle following this
law a PNG particle, and represent the trajectory of a PNG particle by an integer-valued, piecewise-
constant, right-continuous function whose only discontinuous points are integers. To describe the
trajectory of a PNG particle mathematically, we introduce the notation of PNG trajectory line.
Let I be an interval and h(t) a function defined on I that satisfies

h(t) = h([t]) € Z, and h(2m) > h(2m—e¢), h(2m+1) <h(2m+1—¢), formeZNI, (199)

then we say that h(t) is a PNG trajectory line on I. Thus the trajectory of a PNG particle is
uniquely represented by a PNG trajectory line function on the time span.
If two PNG trajectory lines h(t) and g(t) on the same interval I satisfy

limsup g(to) < liminf h(tg) for all tg € I, (200)
t—to t—to
we say that h(t) is above g(t) and g(t) is below h(t).

The multi-layer discrete PNG model is defined by an ensemble of infinitely many PNG particles
under the condition that they do not collide with each other and they end at fixed positions after
a certain time. Below we give a precise description of the model, with a parameter N € Z, that
is related to the total time that the particles move. We fix a constant ¢ € (0,1) throughout this
section. We label the infinitely many particles by xg,x1,x2,..., and represent them by the PNG
trajectory lines xo(t), z1(t),... on the interval between —2N +1—e¢, the initial time, and 2N — 1+,
the terminal time. We require the initial and terminal conditions

(2N +1—¢)=—i, ;2N —1+¢) =—i, i=0,1,2,.... (201)

We also require the strong non-colliding condition that the PNG trajectory line x;(t) is above
xiy1(t), for all i = 0,1,2,.... The multi-layer discrete PNG model is defined by the trajectories of
the particles, one particle for one layer. One example is given in Figure[5| If infinitely many PNG
trajectory lines (xo(t),z1(t),...) on the interval I = [-2N +1—¢,2N — 1+ €] satisfy and that
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Figure 5: An example of multi-layer discrete PNG with N = 4.

x;(t) is above z;41(t), we say that these PNG trajectory lines form an N-permissible configuration
with parameter N. Thus the multi-layer discrete PNG model is equivalent to the set of permissible
configurations. Later we are going to define a probability on it.

Note that in the multi-layer discrete PNG model with parameter IV, since the infinitely many
particles are densely packed at the initial time and terminal time, the particles z;, ¢ =1,..., N —1,
are stationary in time [-2N 4+ 1 —¢,—2N 4+ 2+ 2i]U (2N — 1 — 2i,2N — 1 + €], and the particles
TN,TN41,... are stationary during all the time [-2N + 1 —¢,2N — 1 4 ¢]. Therefore only the first
N particles have nontrivial dynamics.

We define a weight w for a PNG trajectory line h on the interval I = [a,b] as

[b]
wh)=[[ »(h(k) =h(k—=e))) where p(k)=/1-a(va)", (202)

k=[a]+1

and define the weight for an N-permissible configuration of PNG trajectory lines (hg, hi,...) (note
that h,(t) =0 for all n > N)

w(ho, hn,...) = [ w(h), (203)

where I = [-2N + 1 —¢,2N — 1 + € in the formula of w(h;). It is clear that the weight defined in
of PNG trajectory lines corresponds to the law of the PNG particle, and the weight defined
in of the N-permissible configurations corresponds to the law of the multi-layer discrete PNG
model. The normalization /1 — ¢ is chosen such that (see [26, Claim 3.10, Page 300])

> w(hg, hi,...) = 1. (204)

all N-permissible configurations

So the weight defines a probability on the set of all N-permissible configurations.

Thus for any N, the joint distribution of G(N +k, N —k) for k = —N,—N+1,..., N, as defined
in (4)) is the same as the joint distribution of ho(2k) for k = =N, —N +1,..., N, if (ho(t), h1(t)...)
is a random N-permissible configuration with probability given in . Then the point-to-curve
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LPP in Lemma is expressed as [26, Proposition 3.11]

max G(N +1°%s) +s,N+1s) —s) = max G(N +k,N —k)
K1 <s<Kz—c(Ka—K) K1 <k<Ks—c(K2—K1)
4 max ho(2k) = max ho(t). (205)

Klgk’SKQfC(Kngl) tG[Kl,Kzfc(Kngl)]

The proof of Lemma relies on the Gibbs property of the probability space of permissible
2N-tuples, in particular the Gibbs property as follows.

Lemma 6.1. Consider t; < ty, with ty,ty € (=2N +1 — ¢,2N — 1 + €) and Consider h(-) =
(iLo(-), hi(),.. .) distributed according to the multi-layer discrete PNG model. Then the law of ho
restricted to the interval [t1,ts] is distributed according to the PNG trajectory of a single line h(-)
on the interval [t1,ts] conditioned on h(ty) = ho(t1), h(tz) = ho(t2), and h(-) > hi(-) on the entire
interval.

Proof. This lemma is a direct consequence of the formulas (202)) and (203]) that define the proba-
bility distribution of PNG trajectory lines and N-permissible configurations. O

We need two more lemmas. The first is a monotone coupling result:

Lemma 6.2. Let ty <ty <tz € R, a1,as,a3 € Z and fz(t) be a fized PNG trajectory line on [t1,t3]
such that h(ty) < a1, h(t3) < as. Suppose h(t) is a random variable in the space of PNG trajectory
lines H := {h(t) on [t1,t3] | h(t1) = a1, h(t3) = a3, and h(t) is above h(t)} where the probability is
given by the weight w(h) as in up to a normalization constant, and suppose g(t) is a random
variable in the space of PNG trajectory lines G := {g(t) on [t1,t3] | g(t1) = a1, g(t3) = a3} where
the probability is also given by the weight w(g) as in up to a normalization constant. Then
it follows that

P(h(t2) > az) > P(g(t2) > a2). (206)

Sketch of proof. In the proof of [17, Lemma 2.6], the result of this lemma is shown to hold if the
PNG trajectory line is replaced by the trajectory of a standard random walk. The same method,
namely the coupling of Monte-Carlo Markov chains, works in our situation.

We consider a continuous-time Markov chain dynamic on the countable sets H and G. Without
loss of generality, we assume that ¢t; and t3 are even integers. To distinguish the time variable
of the Markov chain dynamic and the variables of h(t) and g¢(¢), we denote the Markov time
as 7, and write the random PNG trajectory lines as h,(t) and g,(t) respectively. The time 0
configuration of hg(t) is chosen arbitrarily in H and we let go(t) = ho(t). The dynamics of the

Markov chain are as follows. For each integer tg € {t1+1,¢t1+2,...,t3—1}, there is an independent
exponential clock which rings at rate 1. For each 7 > 0, let r(7) be i.i.d. random variables in
geometric distribution such that P(r(7) = k) = (1 — q)¢* for k = 0,1,2,.... When the clock

labeled by o rings, the random PNG trajectory line h,(f) remains the same for ¢ ¢ [to,to + 1),
and changes the value on [tg,to + 1) into (1) max(h-(tg — 1), hr(to + 1) + r(7) if ¢ is even, or (2)
min(h,(to — 1), h-(to + 1)) — r(7) if t is odd. Likewise, according to the same clock, the random
PNG trajectory line g (t) remains the same for ¢t ¢ [to,tp + 1) and changes the value on [to, o + 1)
into (1) max(g,(to — 1), g-(to + 1) + r(7) if ¢y is even, or (2a) min(g,(to — 1), g-(to + 1)) —r(7) if to
is odd and min(g,(tg — 1), g-(to + 1)) — r(7) > max(h(to — 1), h(to + 1)), or (2b) remains the same
otherwise.
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Then we observe that for any 7 > 0, h,(t) > g,-(t) for all t € [t1,t3]. Another fact is that the
marginal distributions of these time dynamics converge to the invariant measures for this Markov
chain, which are given by the weight function on the state spaces G and H respectively. This
can be confirmed by checking that the multi-layer PNG model measure is the unique invariant
measure under these irreducible, aperiodic Markov dynamics. ]

Lemma 6.3. Let t] < ty < t3 € R, ay1,a3 € Z and az € R such that (t1,a1), (t2,a2), (t3,a3) are

collinear, i.e.,
as — aq asz — ag

to —t1  t3—to

(207)

Let g(t) be a random variable in the space of PNG trajectory lines with fized ends G := {g(t) on [t1,t3] |
g(t1) = a1, g(t3) = as} where the probability is given by the weight w(g) as in (202)) up to a nor-
malization constant. Then

1
P(g(t2) > az) > 5~ Omin(ta—ty,t3—ta)> (208)

where for any t > 0, 0y > 0 is a decreasing function in t and 6y — 0 as t — oo.

Proof. Without loss of generality, we assume that ¢t; = a; = 0 and then as = (t2/t3)as. We also
assume in the proof that ti,to,t3 are even integers. Consider the i.i.d. discrete random variables
X1, Xo,... with support Z and distribution

P(X; = k) = M(\@k, k=0,+1,42, ..., (209)

and define S,, = >7;'_; Xj. Then the distribution of g(t2) is the same as the distribution of Sy, /5
under the condition that Sy, /» = as. We take a change of measure, and define another sequence of
i.i.d. discrete random variables X/, X/ ... with support Z — a3/t3 and distribution

IP’<X{:I<:—G3> _ 0 =pyva( - Vv4/p) y (pva)" %szo, (210)
t3 l1—gq (Va/p)k if k<o,

where p is the real number in (,/q, \/afl) that satisfies

P -Dva _ _a
I-py@)(p—+q) t3

Then if we define S}, = 371 ; X, the distribution of g(t2) — as is the distribution of S Jo under the
condition that S /o
of X1 is bounded below by a positive constant independent of as/ts. Thus the random walk with
increment X conditioned with S;S j2 = 0 converges weakly to a Brownian motion as t3/2 — oo, and
the convergence is uniform in ag/t3. Since for a Brownian bridge from 0 to 0, at any time between
the initial and the terminal times, the probability that the position of particle is positive equals
1/2, we have that the probability that g(t2) — ag is positive converges to 1/2 as the total steps of
the random walk ¢3/2 — oo and both t2/2 — oo and (t2 —t2)/2 — oo. Since the convergence of the
conditioned random walk to a Brownian bridge is uniform in a3 /t3, the convergence of P(g(t2) —az)

to 1/2 is also uniform in ag/t3. We thus prove the lemma. O

(211)

= 0. Explicit computation shows that the mean of X/ is zero and the variance
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Now we can prove Lemma By , the lemma is transformed into a property of
multi-layer discrete PNG model with parameter N. We denote K} = Ky — ¢(K2 — K1), and
let (ho(:),h1(:),...) be a multi-layer PNG model distributed ensemble of lines with probability
defined by . Then we have

IP’< max  ho(2k) > M1>
K1 <k<K),

<P(ho(2K3) < M3) + P ( max _ ho(2k) > M; and ho(2K3) > M3>

K1 <k<K}, (212)

max ho(Qk) < M,

P(h0(2K3) < M3) Z Z Z P K1<k<K

Ki<K<K, Mi=M; Mi=M;  \ Po(2K) = My and ho(2K3) = M;
By Lemmas and [6.2] we have the inequality for the conditional probability

max  ho(2k) < My,
P | ho(2K3) > My Kisk<K < P(g(2K3) > My), (213)
h0(2K) = Ml and h0(2K3) = M?/)

where ¢(t) is a random variable in the space of PNG trajectory lines with fixed ends G :=
{g(t) on 2K, 2K3] | g(2K) = Mj, ¢g(2K3) = Mj} and the probability is given by the weight
w(g) as in (202)) up to a normalization constant.
Denote Ko K o K
3 — Ko 2 —

My M, 214
K3 - K + K K 3 ( )
such that (K, M), (K2, M}), (K3, M4) are collinear. It is clear that M} > Ms, and then by Lemma
0.9l

M =

1 1
P(g(2K2) > My) > P(g(2K2) > M) > 3~ Omin(Ky— K, K3—Kz) > 3~ Omin(e(Ka—K1),K3—Ka)- (215)

where §; is the same as in Lemma

Thus by (213) and (213).
max ho(2k) < M,
P K1 <k<K <
h0(2K) = M{ and hQ(ZKg) = Mé
ho(2K3) > Ms, ho(2k) < My,
1 1 ’ 0(2K2) > My omax 0(2k) 1 (16
2 = Omin(e(Ka—K1),K3—K2) ho(2K) = M{ and ho(2K3) = M;
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and then

max h0(2k) < My,

> > 5

Ky <K<Ky M= Mi=Mz  \ ho(2K) = M1 and ho(2K3) = M;

ho(2Ks) > M. ho(2k) < M
- 1 Z Z Z 0(2K2) > Mp, Klﬂgl%iCK 0(2k) < M,
2~ Omin(e(Ka—K1)Ks—K2) g, SRCrs Mi=ty Mim ho(2K) = M, and ho(2K3) = M}
1
< P(ho(2K>) > Ms,).

L_ 5. K
2 min(c(K2—K1),K3—K2)
(217)

Substitute (217]) into (212]) and use the correspondence (205)), we obtain the proof of Lemma m
with the ¢ there determined by 2 + ¢; = (% — 8¢)~! where §; is that in Lemma

A  Proof of Lemma 2.2

In this appendix we prove the following estimate of G([yN], N):
Lemma A.1. For any fixed vo > 1, there exist some constant L > 0 and § > 0 such that

3/2

P (G(N], N) = ag(1)N + sho(1)N'/?) < e (218)

for large N and all v € [y ', 7], s € [L,6N?/3]. Here ag(y) and bo(7) are defined in (6) and (9),
¢ > 0 is a constant which only depends on 7y, L and J.

Proof. The following formula for the distribution of G(M, N) was known [6]
P(G(M,N) <n) = (1= )" Dy(9), (219)
where ¢(z) := (1 + /gz)M (1 + g)N, and Dy, (¢) is the n-th Toeplitz determinant with symbol ¢:

n—1
Dy(6) = det ( /| | z—j+’f¢<z>2jf';) . (220)

J,k=0
Note that one can take n — oo in (219)) and obtain
Doo(¢> = lim Dn(¢) - (1 - q)_MN' (221)
n—o0
Now we apply the Geronimo-Case-Borodin-Okounkov formula [23], [12] and obtain
P (G(M,N) < n) = Doo(¢) ™' Dn(¢) = det(1 — K,), (222)
where K, is an operator on I2{n,n + 1,---} with kernel
(o]
= UGR)V(k.J). (223)
k=1
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Here

U(i, k) :== /|2|1 <1 — ﬁ)N 1-az)™ ik 4%

z 2miz’ (224)
oL _ﬂ - o M _j+k dz
V(k,j) = /Z|:1 (1 . (1—+/g2)" = 3z

Now we consider the asymptotics of det(1 — K,,) when M = [yN], n = ao(y)N + sbo(y)N/?
and N — oo. Here v € [75*,70] and s € [L, SN?/?] for some parameters L > 0 and § > 0.

Let L+
2= — VL (225)
VI Va
Note that if we replace the kernels U and V by the following U and V, the determinant det(1 — K,)
does not change.

—N
Ui, k) :== (1 - \Z/Oa) (1 — /gzo)™ 2t U (i, k),

(226)
20

N
Vi) = Vi) (1= Y0) = vz 57

Write i = ag(7)N +zbo(7) N3, j = ao(7)N +ybo(7) N3 and k = ubo(y)N'/3, where z,y > s,
and u > 0. Then we have

Ol B e (227)
|2]=1 iz
where
() = ~Tog(1 — %) + ylog(1 ~ ya2) + ao() log = (229)
and ¢(z) = —(z + w)bo(7y) log(z/20).
Note that )

- 1—g 2(z = Vo) (1 — /qz)

Therefore near zy, we have the following expansions

B q1/2(\/§_’_ \/,.7)5
f(Z) - f(ZO) - 371/2(1 — q)3(1 + \/ﬂ) (Z - ZO)3 + O(’Z - Z0|4)7 (230)

and
ql/6(\/a_|_ \/fy)f)/?)
Y1 —q)(1+ /)3

Note that one can deform the contour such that the contour intersects a small neighborhood of
20. Moreover, for all z on the contour but outside the above neighborhood of zg, R(f(z)— f(z0)) > ¢

¢(2) = —(z +u) ( (Z—Zo)+0(|z—20|2)>- (231)
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and Ro(z) < —c(z + u) for some positive constant c. Therefore by changing the variables near z
one can obtain

2¢N1/3¢im/3

F(i, k) = O(e“N) + by(7) "NV 3/
2€N1/367i7r/3

= O(e™N) +bo(v) ' N A+ w) (1 + O(N TR,

1@ (etwe % o L on-1/3
e o 1O ) (232)

where ¢, € are both positive constants which only depend on L (the lower bound of x +w). Similarly
we have

V(k.j) = O(™™) + bo(n) "NV Aiy + u)(1+ O(NTH2). (233)
Hence
bo(7)NVBEK (i, ) = O(e™"N) 4 O(N/3e=¢*N) /0 h Ai(y + u)du + O(N/3ee’N) /0 h Ai(x + u)du
+ /00 Ai(z 4 u) Ai(y + u)du(1 + O(N~/3))
’ (234)
Note that x,y > s > L. By using the asymptotics of the Airy function, we immediately obtain
]bo(’y)Nl/?’Kn(i,j)\ < o—¢ (min{z®/2,¢ N} +min{y/? ¢ N }) (235)

for large enough N, L, where ¢, ¢’ > 0 are both independent of x,y, 7.
Therefore |Tr(KL)| < 6_0/l53/2,l =1,2,---, for large enough N, L, and s € [L, dN?/?], provided
§3/2 < ¢'. This estimate implies the following

1 1 —1s3/2
> oy det (Ko (ki k) ;| < e L (236)
kie{nn+1, }i=1, 1
Hence
P (G([ny], N) > ag(7)N + sbo(»y)Nl/3> =1—det(l-K,) <> et (237)
=1

and the lemma follows. O
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