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Abstract

We show that the supremum of the average of the Airy process and its time reversal minus

a parabola is distributed as the maximum of two independent GUE Tracy-Widom random

variables. The proof is obtained by considering a directed last passage percolation model with a

rotational symmetry in two different ways. We also review other known identities between the

Airy process and the Tracy-Widom distributions.

1 Introduction and result

1.1 Airy process

We first introduce some notations.

Definition 1.1. Let Fβ(x), β = 1, 2 and 4, denote the GOE, GUE and GSE Tracy-Widom distri-

bution functions defined in [27, 28], respectively.

An explicit formula is included in Section 4 below.

Definition 1.2. Let A(τ), τ ∈ R, denote the Airy process.1 Set

Â(τ) := A(τ)− τ2. (1)

The Airy process was introduced in [22]. It is believed that A(τ) is an universal limit of the

spatial fluctuations for models in the so-called KPZ (Kardar-Parisi-Zhang) class. The limit theorem

to the Airy process is established for several special cases in 2-dimensional directed last passage

percolation, 1 + 1 dimensional random growth, non-intersecting processes, and random matrices.

See, for example, [11] and the references therein.

The basic connection between the Airy process and the Tracy-Widom distribution is that the

marginal distribution of A(τ) at a fixed τ is F2(x). The joint distribution at finitely many times is
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also explicit and is given by a determinantal formula involving the Airy function. The Airy process

is stationary but is not Markovian.

In addition to the above basic connection, there are interesting identities between the supremum

of a function of the Airy process and the Tracy-Widom distribution functions. The purpose of this

paper is to establish one more such an identity. We first review two known identities.

Theorem 1.1 ([19]). For every x ∈ R,

P

[

22/3 sup
τ∈R

Â(τ) ≤ x

]

= F1(x). (2)

Theorem 1.2 ([5]). Let A(1) and A(2) be two independent Airy processes. Then

P

[

sup
τ∈R

(

α1/3Â(1)(α−2/3τ) + β1/3Â(2)(β−2/3τ)

(α+ β)1/3

)

≤ x

]

= F2(x) (3)

for every α, β > 0 and for every x ∈ R.

The main result of this paper is the following identity.

Theorem 1.3. For every x ∈ R,

P

[

sup
τ∈R

(

Â(τ) + Â(−τ)

2

)

≤ x

]

= F2(x)
2. (4)

Hence the supremum of the average of the Airy process and its time reversal minus a parabola

is distributed as the maximum of two independent GUE Tracy-Widom random variables.

Theorem 1.1 was proved by Johansson in 2003. It was obtained indirectly by interpreting the

so-called point-to-line last passage time of a directed last passage percolation (DLPP) model in two

different ways. Theorem 1.2 was proved similarly by considering the point-to-point last passage

time instead. We prove Theorem 1.3 in a similar way by considering the point-to-point last passage

time of a DLPP model with a certain rotational symmetry.

A direct proof of Theorem 1.1 was recently established in [13]. The authors of [13] first extended

the determinantal formula for the joint distribution of A(τ) at finitely many times to a determi-

nantal formula for P(A(τ) ≤ g(τ), t ∈ [−T, T ]) for general function g and T > 0, and then showed

how Theorem 1.1 can be obtained from this formula when g(τ) = τ2 + x. It is an interesting open

question to find a similar direct proof for Theorem 1.2 and Theorem 1.3 as well as Theorem 1.5

and Theorem 1.6 below. The reader is referred to [23] for a survey of this direct proof and also

other identities for the cousins of the Airy process.

There is one more known identity for the Airy process.

Theorem 1.4 ([24]). For every w ∈ R and x ∈ R,

P

[

sup
τ≤w

Â(τ) ≤ x−min{0, w}2
]

= G2→1
w (x) (5)

where G2→1
w (x) is the marginal distribution function of the process A2→1 introduced in [10] (see

(1.7) of [24]).

2



The distribution G2→1
w (x) interpolates F2 and F1: It converges to F2(x) as w → −∞ and to

F1(4
1/3x) as w → +∞. The paper [24] gave a direct proof of (5) using the method of [13]. In terms

of DLPP models, this identity can be obtained by considering a point-to-half line last passage time

by using the result of [10].

In all of the above identities, the distribution of the argmax, τmax, at which the supremum is

attained is also of great interest since it describes the transversal fluctuations of the associated

DLPP model. The distribution of τmax for the identity (2) was computed in two recent papers [20]

and [26] independently. The paper [20] is mathematical and rigorous while [26] is physical. The

density functions obtained in these papers, which look very different, are subsequently shown to

be the same in [4]. It is an interesting open question to find the distribution of argmax for other

identities.

1.2 Airy process plus Brownian motions

The indirect method for Theorem 1.1, 1.2 and 1.3 can also be used to prove other identities involving

the Airy process and the Brownian motion if we consider DLPP models with special rows and

columns. We mention two known results.

Definition 1.3. For real parameters w+ and w−, let Fst(x;w+, w−) denote the distribution function

defined as H(x;w+, w−) in Theorem 3.3 and Definition 3 of [6].

An explicit formula is included in Section 4 below. The function Fst(x;w+, w−) is symmetric

in the parameters w+ and w−. This function is the limiting distribution for the fluctuations of the

height of totally exclusion processes starting with Bernoulli initial conditions (see, e.g., [21]). The

parameters w+ and w− are associated to the initial density of the particles on the positive and

negative parts, respectively. Especially Fst(x;w,−w) appears when the initial condition is random

and stationary. The following identity is obtained recently.

Theorem 1.5 ([12]). Let B(τ), τ ∈ R, be a two-sided standard Brownian motion with B(0) = 0.

Then

P

[

sup
τ∈R

(

Â(τ) +
√
2B(τ) + 4(w+1τ<0 − w−1τ>0)τ

)

≤ x

]

= Fst(x;w+, w−) (6)

for every x ∈ R and w+, w− ∈ R.

Setting w+ = w, w− = −w, replacing Â(τ) by A(τ −2w)− τ2 using the stationarity of the Airy

process, and replacing x by x+ 4w2, we obtain

P

[

sup
τ∈R

(

A(τ − 2w)− (τ − 2w)2 +
√
2B(τ)

)

≤ x

]

= Fst(x+ 4w2;w,−w). (7)

This is the one-dimensional distribution of the conjecture in the displayed equation between (1.31)

and (1.32) of [23]. The process Ast(w) in [23] has one-dimensional distribution function Fst(x +

w2; w2 ,−w
2 ).

The next result requires the following definition.
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Definition 1.4. For k = 1, 2, · · · , let F spiked
k (x;w1, · · · , wk) denote the distribution function defined

as Fk(x;w1, · · · , wk) in (54) of [2] or also equivalently in Corollary 1.3 of [1].

These functions are invariant under the permutations of the parameters w1, · · · , wk. They are

the limiting distributions of the fluctuations of the largest eigenvalue of the so-called spiked random

matrix models. It is known that Fst(x;w+, w−) → F spiked
1 (x;w+) as w− → +∞ (see (3.23) of [6]

and (1.21) of [1]) and F spiked
1 (x; 0) = F1(x)

2 (see (24) of [2]).

Theorem 1.6 ([12]). Let B1(τ),B2(τ), · · · , τ ≥ 0, be independent standard Brownian motions. Let

w1, w2, · · · be real parameters and let B̂i(τ ;wi) = Bi(τ)− 2
√
2wiτ , the Brownian motion with drift.

Then for every x ∈ R and k = 1, 2, · · · ,

P

[

sup
0=τ0≤τ1≤···≤τk

(

Â(τk) +
√
2

k
∑

i=1

(

B̂i(τi;wi)− B̂i(τi−1;wi)
)

)

≤ x

]

= F spiked
k (x;w1, · · · , wk). (8)

In particular, if B(τ), τ ≥ 0, is a standard Brownian motion,

P

[

sup
τ≥0

(

Â(τ) +
√
2B(τ)

)

≤ x

]

= F1(x)
2. (9)

2 Proof of Theorem 1.3

As mentioned above, this proof is similar to that of [19] for Theorem 1.1.

Fix a parameter q ∈ (0, 1). We use the notation X ∼ Geom(q) to indicated that X is a (shifted)

geometric random variable which has the probability mass function (1− q)qk, k = 0, 1, 2, · · · .
In [8], five types of symmetries of DLPP models with geometrically distributed weights were

considered and the limit law for the fluctuations of the last passage time was obtained for each case.

One of the symmetry types is the rotational symmetry described as follows. Let RN := {(i, j) :

i, j = 1, · · · , 2N}. To each (i, j) ∈ RN we associate a weight w(i, j) with the condition that

w(i, j) = w(2N + 1− i, 2N + 1− j), (i, j) ∈ RN . (10)

Apart from the above symmetry conditions, we assume that the random variables are independent

and are distributed as Geom(q), that is, w(i, j) for (i, j) in HN := {(i, j) : j < 2N+1−i}∪{(i, 2N+

1− i) : i = 1, · · · , N} are independent and distributed as Geom(q), and w(i, j) for (i, j) ∈ RN \HN

are defined by the symmetry condition (10).

Let G · (N) denote the last passage time from (1, 1) to (2N, 2N) in this model:

G · (N) := max
π

W (π), W (π) :=
∑

(i,j)∈π

w(i, j) (11)

where π is an up/right path from (1, 1) to (2N, 2N) consisting of sites whose coordinates increase

weakly and W (π) is the weight of path π. Here the superscript · represents the symmetry of the

model under the 180 degree rotation about the center of the square. This model is equivalent to
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the model (ii) in Section 4.4 of [8] (see page 14) after simple translations. It was shown in Theorem

4.2 (ii) of [8] that

lim
N→∞

P

[

G · (N)− (2N)µ

22/3(2N)1/3σ
≤ x

]

= F2(x)
2 (12)

where

µ :=
2
√
q

1−√
q
, σ :=

q1/6(1 +
√
q)1/3

1−√
q

. (13)

The Poisson version of this percolation model is related to the combinatorial problem of finding

the longest increasing subsequence of random signed permutations and also the so-called 2-colored

permutation (see, e.g. Remark 2 in Section 1 of [8]), and the limit theorem analogous to the above

was obtained in [29, 9].

We now consider G · (N) in a different way. Let LN := {(i, 2N + 1− i) : i = 1, · · · , 2N} be the

sites on the straight line joining (1, 2N) and (2N, 1). Every up/right path from (1, 1) to (2N, 2N)

intersects LN at a unique point. If we consider the paths which intersect LN at a specific point

(i, 2N+1−i), then the maximal weight among these paths equals the sum of two point-to-point last

passage times, one from (1, 1) to (i, 2N+1−i) and the other from (i, 2N+1−i) to (2N, 2N), minus

the weight at (i, 2N + 1 − i), which is counted twice. But due to the symmetry conditions (10),

the last passage time from (i, 2N + 1 − i) to (2N, 2N) equals the last passage time from (1, 1) to

(2N + 1− i, i). Therefore, considering all possible intersection points, we find that G · (N) has the

same distribution as

max
−N+1≤u≤N

(G(N + u,N + 1− u) +G(N + 1− u,N + u)) +DN (14)

where G(m,n) is the usual point-to-point last passage time from (1, 1) to (m,n) with i.i.d. (shifted)

geometric weights with no symmetry conditions and |DN | is bounded by the maximum of N

independent Geom(q) random variables, which is due to the double-counting of the weights on

LN . Since DN = O((logN)1+ǫ) with probability 1 as N tends to infinity for any ǫ > 0, we obtain,

inserting (14) into (12), that

lim
N→∞

P

[

max−N+1≤u≤N (G(N + u,N + 1− u) +G(N + 1− u,N + u))− (2N)µ

22/3(2N)1/3σ
≤ x

]

= F2(x)
2.

(15)

Since G(m,n+1) and G(m+1, n) are between G(m,n) and G(m+1, n+1), we can change N +1

to N and find

lim
N→∞

P

[

max|u|<N (G(N + u,N − u) +G(N − u,N + u))− (2N)µ

22/3(2N)1/3σ
≤ x

]

= F2(x)
2. (16)

We show that the left-hand side equals the left-hand side of (4).

The limit of G(m,n) is well known. It was shown in [17] that

G(m,n)

qm+ qn+ 2
√
qmn

→ 1

1− q
(17)

in expectation and also in probability as m,n → ∞ such that m/n is in a compact subset of

(0,∞). This implies, after a simple calculation, that the maximum in (14) is attained at u near
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0. This statement can be made precise: see (21) below. Now if we scale u = N2/3τ and consider

G(N+N2/3τ,N−N2/3τ) as a process in “time” τ , then its fluctuations converge to the time-scaled

Airy process minus a parabola in the finite distribution sense as well as in the functional limit sense

[19]. (Here N2/3 is the scale of the so-called transversal fluctuations of KPZ universality class

[18, 3].) More precisely, if we set2

HN (τ) :=
G(N + d−1N2/3τ,N − d−1N2/3τ)− µN

σN1/3
, d :=

q1/6

(1 +
√
q)2/3

, (18)

then HN(τ) converges to A(τ)− τ2 in the sense of weak convergence of the probability measure on

C[−T, T ] for every fixed T > 0. Substituting (18) into (16), we obtain

lim
N→∞

P

[

max
|τ |<dN1/3

(

HN (τ) +HN(−τ)

2

)

≤ x

]

= F2(x)
2. (19)

It remains to show that the left-hand side equals the left-hand side of (4).

The functional limit theorem mentioned above implies that

lim
N→∞

P

[

max
|τ |≤T

(

HN (τ) +HN (−τ)

2

)

≤ x

]

= P

[

max
|τ |≤T

(

Â(τ) + Â(−τ)

2

)

≤ x

]

(20)

for any fixed T > 0. The tail estimate of HN (τ) for large |τ | was also obtained in [19]. The analysis

in that paper implies that (see (127) in [5] for details) for every fixed x ∈ R and ǫ > 0, there are

T0 and N0 such that

P

[

max
|τ |>T

HN (τ) > x

]

< ǫ (21)

for all T > T0 and N > N0. Since P

[

max|τ |≤T

(

Â(τ)+Â(−τ)
2

)

≤ x
]

is monotone in T , (20) and (21)

imply that the left-hand side of (19) equals the left-hand side of (4). Theorem 1.3 is proved.

Remark 2.1. In addition to the symmetry · , four other symmetry types were considered in [8].

They are indicated by symbols , , , and . The first one has no symmetry. If we consider

the last passage time in this case as above, we arrive at Theorem 1.2: the maximal path in TN :=

{(i, j) : i + j ≤ N + 1} and RN \ TN give rise to two independent Airy processes since the last

passage times in two parts are independent to each other. The second symmetry type has the

reflection symmetry about the line LN . Since the maximal path in TN and RN \ TN are identical

except for the asymptotically negligible contribution from the site on LN , their sum is basically

twice of the maximal path in TN , thus giving rise to single Airy process. This leads to Theorem 1.1.

Remark 2.2. The symmetry types , and contain an extra reflection symmetry about the other

diagonal line {(i, j) : j = i}. Hence we can consider these cases as directed last passage models in

the triangle T := {(i, j) : j ≤ i}. The limiting distribution for and is F4 and F2, respectively.

Now the analog of (18) in triangle T does not converge to Airy process but to a different process

2In (1.8) of [19], σ is given as
q1/6(1+

√
q)1/3

1−q
. This is a typographical error. The correct formula of σ is

q1/6(1+
√

q)1/3

1−√
q

as in [17].
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which interpolate F4 and F2 [25]. Thus we can expect that the the supremum of two independent

such processes minus a parabola, over τ ∈ [0,∞), equals F4, and the supremum of one such process

minus parabola equals F2. To make this statement rigorous, we need the functional theorem and

the tail estimate for DLPP in triangle T . This will be discussed in future work. We note that by

making the weights on the diagonal line {(i, j) : j = i} different from the rest of the triangle, we

can obtain identities for yet another process.

3 Outline of proof of Theorem 1.5 and 1.6

In this section, we outline the proof of Theorem 1.5 and 1.6 obtained in [12] in order to illustrate

how different DLPP models give rise to different identities. The basic idea is same as the previous

section and [19]: we consider a DLPP model for which the limit theorem is proved, and then

interpret the last passage time as the maximum of last passage times of paths with arbitrary end-

points. The technical part is the functional limit and the tail estimate. It turned out that for

Theorem 1.5 and 1.6 one needs the functional limit theorem and the tail estimates along horizontal

lines and vertical lines instead of the diagonal line in the previous section. Such results are obtained

in [12] by proving the so-called slow decorrelation phenomenon and using the results of Johansson

[19].

For Theorem 1.5, one uses the following DLPP model: the weights are independent and satisfy

w(i, j) ∼ Geom(q), i, j = 1, · · · , N,

w(i, 0) ∼ Geom(α+
√
q), i = 1, · · · , N,

w(0, j) ∼ Geom(α−
√
q), j = 1, · · · , N,

w(0, 0) = 0

(22)

where q ∈ (0, 1) is a fixed parameter and

α+ = 1− 2w+

σN1/3
, α− = 1− 2w−

σN1/3
, (23)

for fixed real parameters w+ and w−. Here σ is same as (13). It was shown in Section 4 of [6] that

the last passage time X(N) from (0, 0) to (N,N) satisfies

lim
N→∞

P

[

X(N)− µN

σN1/3
≤ x

]

= Fst(x;w+, w−). (24)

We now consider the last passage time in a different way. The last passage path, considered

as starting at (N,N) and ending at (0, 0), either arrives at a point (i, 0) for some i and travel

horizontally left to (0, 0), or arrives at a point (0, j) for some j and travel vertically downward to

(0, 0). Hence, denoting by G(N − i,N − j) the last passage time from (N,N) to (i, j), we find that

X(N) = max

{

max
i=1,··· ,N

(

G(N − i,N) + S+
i

)

, max
j=1,··· ,N

(

G(N,N − j) + S−
j

)

}

(25)

where S+
i is the sum of i independent Geom(α+

√
q) random variables and S−

j is the sum of j inde-

pendent Geom(α−
√
q) random variables. From (17) and the law of large numbers of independent
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variables, it is reasonable to expect that the maximum of the above expression occurs when i and

j are close to 0. Now set

H̃N (τ) :=
G(N − 2d−1N2/3τ,N)− µ(N − d−1N2/3τ)

σN1/3
, τ ≥ 0,

H̃N (τ) :=
G(N,N + 2d−1N2/3τ)− µ(N + d−1N2/3τ)

σN1/3
, τ ≤ 0,

(26)

where d is defined in (18). Then H̃N (τ) converges to Â(−τ) in the sense of finite distribution and

also in the functional limit sense [12]. On the other hand, since the mean and the variance of

Geom(a) is a
1−a and a

(1−a)2
respectively, we find from the central limit theorem, after inserting (23),

that

S±
2d−1N2/3τ

− µd−1N2/3τ

σN1/3
⇒

√
2B±(τ)− 4w±τ (27)

in distribution where B+(τ) and B−(τ) are independent standard Brownian motions. Thus, we find

that, at least formally, X(N)−µN

σN1/3 converges to

max

{

sup
τ≥0

(

Â(−τ) +
√
2B+(τ)− 4w+τ

)

, sup
τ≤0

(

Â(−τ) +
√
2B−(−τ) + 4w−τ

)

}

. (28)

This argument was made rigorous in [12]. After we change τ to −τ , this, combined with (24),

implies Theorem 1.5.

Theorem 1.6 is obtained by considering the DLPP model where the weights are independent

and satisfy

w(i, j) ∼ Geom(q), i = k + 1, · · · , N, , j = 1, · · · , N,

w(i, j) ∼ Geom(αi
√
q), i = 1, · · · , k, j = 1, · · · , N

(29)

for fixed integer k where

αi = 1− 2wi

σN1/3
, i = 1, · · · , k. (30)

The limit theorem to F spiked(x;w1, · · · , wk), similar to (24), was proved in [2] for exponentially

distributed weights and in Theorem 2-3′ [16] (set m = 1) for geometrically distributed weights. On

the other hand, the analog of (25) is

max
0=j0≤j1≤···≤jk≤N

{

k
∑

i=1

(S
(i)
ji

− S
(i)
ji−1−1) +G(N − k,N − jk)

}

(31)

where S
(i)
ℓ = w(i, 1) + · · ·+ w(i, ℓ). This leads to the left-hand side of (8). See [12] for the detail.
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4 Formula of distribution functions

For the convenience of the reader, we include the formulas of the Tracy-Widom distribution func-

tions and also the distribution functions in Definition 1.3 and 1.4. All of them have at least two

different expressions. One expression involves the Painlevé equation and another expression in-

volves a Fredholm determinant of an operator whose kernel is related to the Airy function. Here

we only present the formulas involving the Painlevé equation.

Let q(x) be the solution to the Painlevé II equation q′′ = 2q3 + xq satisfying the condition that

q(x) ∼ Ai(x) as x → +∞ where Ai(x) is the Airy function.3 The solution is unique and smooth,

and is called the Hastings-McLeod solution [15, 14]. The Tracy-Widom distributions are defined

as [27, 28]

F2(x) = F (x)2, F1(x) = F (x)E(x), F4

(

x/
√
2
)

=
1

2
F (x)

(

E(x) +
1

E(x)

)

(32)

where

F (x) = e−
1
2

∫∞
x

(s−x)q(s)2ds, E(x) = e−
1
2

∫∞
x

q(s)ds. (33)

The distribution functions in Definition 1.3 and 1.4 are more involved. Nevertheless they are

expressible only in terms of q(x) above and two other functions a(x;w) and b(x;w). Let a(x;w)

and b(x;w) be the solution to the initial value problem of the system of first order linear differential

equations,

d

dx

(

a(x;w)

b(x;w)

)

=

(

0 −q(x)

−q(x) −2w

)(

a(x;w)

b(x;w)

)

,

(

a(0;w)

b(0;w)

)

=

(

E(x)2

−E(x)2

)

. (34)

There is a unique solution which is smooth in (x,w) ∈ R×C. The above differential equations are

the first part of the Lax pair for the Painlevé II equation in the theory of integrable systems. Then

(see (3.22) of [6])

Fst(x;w+, w−) = F2(x)

(

a(x;w+)a(x;w−)−
a(x;w+)a(x;w−)− b(x;w+)b(x;w−)

2(w+ + w−)
p(x)

)

(35)

where

p(x) :=

∫ x

∞
q(y)2dy = q(x)4 + xq(x)2 − (q′(x))2. (36)

When w+ + w− = 0, the above can also be written as (see (3.35) of [6])

Fst(x;w,−w) =
d

dx

(

F2(x)

∫ x

−∞
a(y;w)a(y;−w)dy

)

. (37)

We note that the expectation of Fst(x + 4w2;w,−w) is 0 (see Proposition 3.4 in [6]). When

w+ = w− = 0, we have (see (2.16) of [6])

Fst(x; 0, 0) =

{

1 + (x− 2q′(x) + 2(q(x))2)

(
∫ ∞

x
q(s)2ds

)}

(E(x))4F2(x). (38)

3The function u(x) = −q(x) is used in [6] and [1]
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The Painlevé formula for the distribution functions in Definition 1.4 was obtained in [1]. We

have (see Corollary 1.3, Lemma 1.4, and and (1.16) of [1])

F spiked
k (x;w1, · · · , wk) = F2(x)

det
(

(wi +
d
dx)

j−1f(x;wi)
)k

i,j=1
∏

1≤i<j≤k(wj − wi)
, f(x;w) := a(x;w/2). (39)

Some special cases are (see (1.40) of [1])

F spiked
1 (x; 0) = F2(x)(E(x))2 = (F1(x))

2,

F spiked
2 (x; 0, 0) = F2(x)(E(x))4

(

1− q(x+ 2q2 − 2q′)
)

,

F spiked
3 (x; 0, 0, 0) = F2(x)(E(x))6

(

1− 2q(x+ 2q2 − 2q′) +
1

2
(q2 + q′)(x+ 2q2 − 2q′)2

)

.

(40)
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