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Abstract

We consider the totally asymmetric simple exclusion process on a ring with stationary initial condi-
tions. The crossover between KPZ dynamics and equilibrium dynamics occurs when time is proportional
to the 3/2 power of the ring size. We obtain the limit of the height function along the direction of the
characteristic line in this time scale. The two-point covariance function in this scale is also discussed.

1 Introduction

In this paper we consider the totally asymmetric simple exclusion process (TASEP) on a ring of size L which
we denote by Zy. The dynamics of TASEP on the ring is the same as that of TASEP on Z except the
particle at the site L — 1, once it jumps, moves to the site 0 if 0 is empty, here the 7 denotes the element 4
(mod L) in Zy, for i € {0,1,--- ,L —1}. Let n; = n;(t) the occupation variable of this model, 0 <i < L — 1.
n; is 1 if the site 7 is occupied or 0 if the site 7 is empty. We extend the occupation variable to Z periodically
by defining 7;(t) = n;4+1(¢) for all ¢ € Z. Define the following height function

2J0(t) + X5, (1= 205(1)),  £>1,
he(0) = < 2Jo(t), (=0, (1.1)

2J0(t) = Xj_paa (1 = 205(1), €< 1,

where Jy(t) counts the number of particles jumping through the bond from 0 to 1 on Zj during the time
interval [0,¢]. Note that h¢(£) — ho(¢) = 2J,(t), where J;(t) counts the number of particles jumping through
the bond from ¢ (mod L) to £+ 1 (mod L) on Zj, during the time interval [0,¢]. Although n,(t), Je(t) are
both periodic in ¢, h:(¢) is not periodic except when the system is half-filled. Indeed, we have h;(¢ + L) =
hi(¢) + (L — 2N) for all £ € Z and t > 0, where N = ZJL:_OI n; is the number of particles on the ring.

We are interested in the fluctuations of h;(¢) when t and ¢ both increase with order O(L?/?), and L, N go
to infinity proportionally. The scale t = O(L?/?) is called the relaxation time scale, which was first studied
by Gwa and Spohn [10]. At this relaxation time scale, one expects to see a crossover between the KPZ
dynamics and the Gaussian dynamics and hence the fluctuations are of great interest to both math and
physics communities. The crossover limiting distributions were obtained only recently by Prolhac [15] and
Baik and Liu [4]. In [15], Prolhac obtained (not rigorously) the limit of the current fluctuations for step, flat
and stationary initial conditions in the half particle system (with the restriction L = 2N). Independently,
Baik and Liu also obtained the limit in a more general setting of N and L for flat and step initial conditions
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in [4]'. The main goal of this paper is to extend the work of [4] to the stationary initial condition case and
prove the rigorous limit theorem of h:(¢) in the relaxation time scale. Compared to [15], there are some other
differences besides the rigorousness: We consider a more general setting of stationary initial conditions than
the half-filled one in [15], and a more general object, the height function h:(¢), than the current in [15], which
is equivalent to h;(0). Hence the limiting distribution obtained in this paper, Fy(z;7,7) in Theorem 1.1,
contains two parameters of time 7 and location +, in contrast to that of only time parameter in [15].

Due to the ring structure, the number of particles is invariant. Hence it is natural to consider the following
uniform initial condition of IV particles: initially all possible configurations of N particles on the ring of size
L are of equal probability, i.e., ( ﬁ)_l = w This initial condition is stationary, and is the unique one
for fixed number of particles N and ring size L [12].

For this uniform initial condition, there is a characteristic line £ = (1 — 2p)t in the space-time plane?,
here p = NL~! is the density of the system. The main theorem of this paper is about the fluctuations of
h¢(£) near the characteristic line in the relaxation time scale.

Theorem 1.1. Let ¢; and ¢y be two fixed constants satisfying 0 < ¢1 < co < 1. Suppose Ny, is a sequence
of integers such that c1L < Np < coL for all sufficiently large L. We consider the TASEP on a ring of size
L with N, particles. Assume that they satisfy the uniform initial condition. Denote pr, = Np /L. Let T and
w be two fized constants satisfying T > 0 and w € R. Suppose

T 3/2
ty, = mL /2, (1.2)
Then along the line
(= (1= 2pp)tr, + 2w(pr (1 — pr))/3t7?, (1.3)
we have
LI;H;OP (htL (br) — (1 —2pp)lr, —2pr(1 — pp)tr < a:) — Fy(rY32: 7, 2072/3) (1.4)

~207%(1 = pp)2/3t,°

for each x € R. Here Fy(x;7,7) is a distribution function defined in (2.1) for any ™ > 0 and v = 2wr?/3 € R.
1t satisfies Fy(x;71,v) = Fy(x; 7,7+ 1) and Fy(z;1,7) = Fy(x; T, —7).

Remark 1.1. In [15], Prolhac obtained (1.4) when £y, =0 and pr, = 1/2 (and hence w =0, v = 0) with a
different formula of the limiting distribution. His proof, as mentioned before, is not completely rigorous.

Note that if we write v = 2w7?/3, then the line (1.3) can be rewritten as
L, = (1—2pp)ty, +~L. (1.5)

This expression gives an intuitive reason why the limiting function Fy (x;7,7) is periodic on ~: It is the
periodicity of the shifted height function hy, (€7, + L) — (1 — 2p1)(lr, + L) = hy, (¢1) — (1 — 2p1)lr.

To better understand the parametrization in the above theorem, we compare it with the infinite TASEP
with stationary condition, i.e., the stationary TASEP on Z. Suppose initially each site in Z is occupied
independently with probability p. Then the height fluctuation converges along the line £ = (1 — 2p)t +
2w(p(1 — p))/3t%/3 for any given constant w € R, see [9, 2],

: he(€) — (1 —2p)¢ — 2p(1 — p)t
lim P ( “op23(1 — p)2Bti/s

Sx) = F,(x), x€R, (1.6)

t—o0

IThe formulas of the limiting distribution in two papers [15] and [4] are slightly different and it is yet to be proved that they
are indeed the same. The numeric plots show that they do agree.

2Tt is the characteristic line of the related Burger’s equation in the space-time plane. See the appendix of [5] for discussions
on the Burger’s equation related to TASEP on a ring.



where F,(s) is the Baik-Rains distribution defined in [6]3. Theorem 1.1 of this paper shows that for the
stationary TASEP on a ring with uniform initial condition in relaxation time scale, similar limiting laws hold
near the characteristic line. The difference is that for the ring TASEP, the fluctuations have a periodicity
on the parameter v = 2w72/3, which is not present in the infinite TASEP model.

The leading terms (1 — 2p1)¢r and 2pr(1 — pr)tr in he, (€r) can be explained as follows. The first
term (1 — 2pr)¢;, measures the change of height along the direction ¢: For fixed tr, he, (¢1) — hey (0)
grows as (1 — 2pp)f;, in the leading order since hy, (¢r, + L) = hy, (1) + (1 — 2p1)L. The second term
2pr(1 — pr)tr, measures the time-integrated current at a fixed location: hy, (¢r) — ho(€r) = 2Jo(tr) which
grows as 2p1,(1 — pr)tr, in the leading order.

As an application of Theorem 1.1, we can express the limit of two-point covariance function in terms
of Fy(z;7,7). Recall the occupation variable 7,(t) at the beginning of the paper. Define the two-point
covariance function

S(6;t) = E (ne(t)no(0)) — p? (1.7)

where p = N/L is the system density. It is known that for the stationary TASEP, there is a relation between
this two-point function S(¢;¢) and the height function he(t): 8S(¢;t) = Var(hi(¢ 4+ 1)) — 2Var(h:(¢)) +
Var(h:(¢—1)). This relation was proved for the infinite TASEP in [14] but the proof is also valid for TASEP
on a ring after minor modifications. Using this identity and the tail estimate which is provided in the
appendix A, we obtain the following result. The proof is almost the same as that for the stationary TASEP
on Z, see [3], and hence we omit it.

Corollary 1.1. Suppose Np,tr and {1 are defined as in Theorem 1.1 with the same constants T > 0 and
v =2wr?/3 € R. Then we have
2t2/35(£L; tL)
Jim e >3 = g (;7), (1.8)
“pr (1= pr)

if integrated over smooth functions in v with compact support, where

gu(v;7) = 72/3/H{$2dFU($;T,’Y)- (1.9)

Another application is that one can obtain the height fluctuations for other stationary TASEP on a ring.
Note that the uniform initial conditions with N = 0,1,--- | L form a complete basis for all stationary initial
conditions. Hence we may apply Theorem 1.1 for other stationary initial conditions. One example is the
Bernoulli condition. Suppose initially each site of the ring is occupied independently with probability p,
where p is a constant satisfies 0 < p < 1. Then we have the following result.

Corollary 1.2. Suppose p € (0,1) is a fized constant. We consider the TASEP on the ring of size L with
Bernoulli initial condition of parameter p. Suppose w € R, 7 > 0 and x € R are fixed constants. Denote

T — e
p(1—p) (1.10)
0 = (1= 2p)ty, + 2w(p(l — p)) /323,
Then
Lh_{I;OP (htL (r) — (1 —2p)lr —2p(1 — p)tr < m) — Fp(rBa; 7, 2072/3). (1.11)

w1 —

31n [6], Fi(s) was denoted by H(s + w?;w/2, —w/2).



Here Fg(x;7,7) is a distribution function for arbitrary T > 0 and vy = 2wr?/3 € R, given by
1 _ =77 v2 — g2 )
Fp(x;T, 127/6 2 Fy e+ ————;7,y | dy. 1.12
plairn) =5 | o (o4 i) ay (1.12)

A formal proof is as follows. Assume there are pL + y+/p(1 — p)L'/? particles initially. By applying
Theorem 1.1, we obtain that

he, (br) — (1 —2p)lr, — 2p(1 — p)t
P e (fr) = Pl 11753 Pt <z | pL+yy/p(l— p)Ll/2 particles with uniform initial condition
—2p2/3(1 — p)2/3¢ )
(1.13)
converges to
Fy (Tl/3m—7y—7'y2;7',7+2y7) (1.14)
as L — oo, where v = 2wr?/3. Together with the central limit theorem, we obtain
he, (b)) — (1 —2p)ly —2p(1 — p)t 1
lim 1 (€r) — ( p)lL 1?(3 p)tL <z = /e*?ﬁ/?FU <T1/3x —7y—7y2;7,7+2y7) dy.
L—oo —2p2/3(1 — p)2/3tL/ Vo Jr
(1.15)

By a simple change of variables we arrive at (1.12). This argument can be made rigorous by a simple tail
estimate on the number of particles and then by the dominated convergence theorem. Since the argument
is standard, we omit the details.

Recall that Fy(xz;7,7) is symmetric on 4. Hence by using the formula (1.12) we have Fg(z;7,7) =
Fp(x;7,—7). However, different from Fy(x;7,7), we do not expect Fg(z;7,7) = Fp(z;7,v + 1). It is
because by definition k(¢ + L) — hs(£) — (1 — 2p)L = —2 Zfifﬂ(nj (t) — p) = —2L'/%/p(1 — p)x where y
is a standard Gaussian random variable. Hence formally

he,(bp + L) — (1 =2p)(br + L) = 2p(L —p)tr, Dy, () — (1 = 2p)lr —2p(1 —p)tr, X
—2p2/3(1 — p)2/3/3 - —op2/3(1 — p)2/3L/3 r1/3°

(1.16)

Here the two random variables on the right hand side of (1.16) are not necessarily independent. This relation
still strongly indicates that F'p (7‘1/390; 7,7 4 1) is not the same as Fp(t'/32; 7, 7).

The organization of this paper is as follows. In Section 2 we give the explicit formula and some properties
of Fy(x;7,7). The proof of Theorem 1.1 is given in Section 3 and 4: The finite time distribution formula is
provided in Section 3 and then the asymptotics in Section 4. Finally in the appendix A we give some tail
bounds related to the distribution function Fy(z;7,7).

Acknowledgement

The author would like to thank Jinho Baik, Ivan Corwin and Peter Nejjar for useful discussions.

2 Limiting distribution Fy;

The limiting distribution Fy (z;7,7) is defined as following

d dz
Fy(x;7,7) = — ]{ = (ercA1(z)+TA2(z)+2B(z) det (I - K:g;)) m (2.1)



where the integral is along an arbitrary simple closed contour within the disk |z| < 1 and with 0 inside. The
terms A;(z) are given by
1 1

Ai(z) = —\/T—WLis/z(Z)v Ag(2) = — Lis/2(2), (2.2)

and B(z) is given by

z il 9 2
ey - L [ Lsto)

- dy. 2.
o ; y (2.3)

Here Liy(z) is the polylogarithm function defined as follows: When |z| < 1, Lis(z) := > ;o i—k, and it has
an analytic continuation

Lis(2) = ﬁ /OOO A (2.4)

et —z
for all z € C\ R>;.
The operator ICgQ% is defined on the set S jery = {& : e=€/2 = 2 Re(€) < 0} with kernel

e®: (€1, m)+%. (miz,7)+ 3 (62 -n)

K@ — K@) (&), by ) = 2.5
Z’x(&’&) Zym(& @) neg,;le& &n(&+n)(n+ &) (2:3)

where .
bt r) = —ar ag 2 [ Liple s g€ S (26)

The terms A;(z), B(z) and ICLQ% are defined in [4]. They appeared in the two-parameter family of limiting
distributions Fy(x;7,7) of TASEP on a ring with step initial condition in the relaxation time scale. More
explicitly, F»(x;7,~) has an integral formula which is similar to (2.1)

Pyl ,7) = j{ezAl(z)+rA2(z)+2B(z) det (I _ ICS%) d%ﬂ (2.7)
) 2wz

see (4.10) of [4]. It is known that the terms A;(z), B(z) and ICQ7 are well defined and bounded uniformly
on the choice of z (but the bound may depend on the contour). Furthermore, the Fredholm determinant
det (I - IC%?) is periodic and symmetric on v, which implies Fy(z;7,v) = Fo(x; 7,7+ 1) and Fa(x;7,7) =
Fy(x; 7, —7).

To ensure Fy(z;7,7) in (2.1) is well defined, we still need to check that the derivative in the integrand
exists and is uniformly bounded. The only non-trivial part is to check % det (I — ICQ%) This can be proved
by directly using the super-exponential decaying property of the kernel. The argument is standard and we
do not provide details. Alternately, our analysis in Section 4.6 also implies that % det (I - IC?%) is a limit

of a uniformly bounded sequence hence it is also uniformly bounded. See Lemma 4.5 and 4.6.

As we discussed in Remark 1.1, the limiting distribution when v = 0 was obtained in [15]. Numeric plots
of our formula Fy(x;7,0) match the limiting distribution obtained in [15] well, see Figure 1 in this paper
and Fig.5.b in [15]. However, a rigorous proof of the equivalence on Fy (z;7,0) and their formula (see (10)
of [15]) is still missing.

For any fixed 7 > 0 and v € R, the function Fy(z;7,7) is a distribution function. The proof is not
trivial and we provide it in the appendix A. Similar to Fy(z;7,~), the function Fy(z;7,~y) has the properties



Figure 2: The three dashed lines are, from bot-

Figure 1: The three dashed lines are, from left to tom to top (along z = 0), density functions of
right, density functions of Fyy(71/3z;7,0) with 7 = 1, Fy (,-,- + L\//;x-,-l/Q; T, 0) with 7 = 0.02, 0.1, and 1

0.1, and 0.02 respectively. And the solid line is the

respectively. And the solid line is the density function
density function of Baik-Rains distribution Fp(x).

of the standard Gaussian distribution.

Fy(z;m,v+1) = Fy(z;7,7v) and Fy(x;7,7v) = Fy(x; 7, —7). By using the following simple identity (see (11)
of [8])
2pr(1 — t
B, (60)) = (1~ 200)60 + 2011 — o)ty + 220 =P (2.8)

which can also be checked directly from the definition, we have

/xdFU(x;T, v)=-—T. (2.9)
R

The rigorous proof of this identity is similar to Corollary 1.1. Thus we do not provide details here.

Besides, we expect the following small 7 and large 7 limits of Fy (x;7,7):

(1) For any fixed z,w € R, we have (see Figure 1 for an illustration)

lim Fy (732 7, 20r%/3) = Fy (). (2.10)

T—0

(2) For any fixed 7,2 € R, we have (see Figure 2 for an illustration)

lim F ( LT e ) ! /m —v*/2q (2.11)
im T+ —ar /T,y | = — e . .
T—00 v \/5 v o2 oo Y

3 An exact formula of height distribution

In this section, we prove an exact formula for the height function with uniform initial condition. This formula
turns out to be suitable for later asymptotic analysis.

Before stating the results, we need to introduce some notations. Most of these notations are the same
as in [4]. Hence we just go through them quickly without further discussions. See Section 7 of [4] for more
details.

We fix L and N in this section, and denote

the density of the system.



For each z € C, define a polynomial
G(w) = w™ (w4 1IN — g (3.2)

and its root set
R, = {w: gz(w) = 0}. (3.3)

When z = 0, R, is a degenerated set of two points 0 and 1 with multiplicities N and L — N respectively.
On the other hand, when z — oo, R, is asymptotically equal to a set of L equidistant points on a circle
|w| = |z|. For our purpose, we focus on the case when

0< |z| <ro:=p"(1—p)r. (3.4)

For such z, R, contains L — N points in the half plane {w : Re(w) < —p} and N points in the second half
plane {w : Re(w) > —p}. We denote R, jefr and R, right the sets of these L — N and N points respectively.
Then we define
qZ,left(w) = H (w —u), qz,right(w) = H (w - v), (3.5)
UE R left VER, right
which are two monic polynomials with root sets R, jeft and Ry right respectively. These two functions satisfy
the following equation
qz,left (w)quight (w) =z (w) (36)

for all w € C.
For z € C satisfying (3.4) and arbitrary k, ¢ € Z, we define a kernel Kf,ze acting on £2 (R, er) as follows

1

@) (u,u') = falu ’
Kanalw ) =0 >, oo hw)

VE Ry right

u,u" € Ry loft, (3.7)

where the function f5 : R, — C is defined by

(qz,right(w))2 w2N=k+2(gy 4 1)~k gtw

w + P ’ w e Rz,lefty

f2(w) = fz(’w;k,ﬂ) = 9 (3.8)
(qé right (w)) w2N=kH2 (g 4 1) R L ptw
| € Rz i .
w+p ’ w ,right
We also define a function
IL, ()" N e n, , (0 + DTN

Cj(\?) (Z; k7£) _ ERZ left € Rz right . (39)

HueRz,lcft HveRz,right (U o u)

K(?,z’z and C](\?) (z;k,0) are the same as Ky~ and C](\?) (z) in [4] (with ¢ and k replaced by a and kK — N

z
respectively) but we emphasize the parameters k and ¢ for our purpose.

Finally we denote Ay the difference operator

Arf(k) = F(k+1) = (k) (3.10)

for arbitrary function f : Z — C. For an example, AkC](\?) (z;k,0) = C](\f)(z; k+1,0)— CJ(\?)(Z; k,0).

Now we state the formula for the distribution function of h:(¥).



Theorem 3.1. Suppose £ and b are both integers satisfying b = £ (mod 2). For the N-particle TASEP on
the ring of size L with uniform initial condition, the distribution of the height function is given by

—1)N+1 dz
PM%@Zb):(&)L%AkGﬁ%mhé+1yd%<l+fé2jH))%m#+p (3.11)
N

where b2

k=1-— % (3.12)
and the integral is along an arbitrary simple closed contour which contains 0 inside and lies in an annulus
0 < |z| < rp.

Proof. We consider an equivalent model: the TASEP on Xy (L). The configuration space X (L) is defined
by
Xn(L) = {(x1,29, - ,on) €EZYN 12y <xy < --- < any <1 + L}. (3.13)

The equivalence between TASEP on Xy (L) and TASEP with N particles on the ring of size L is as follows:
The ring TASEP can be obtained by projecting the particles in TASEP on Xy (L) to a ring of size L; On
the other hand, in the TASEP on a ring if we define x to be the number of steps the k-th particle moved
plus its initial location, then (z1,---,zy) € Xn(L) and we obtain the TASEP on Xn(L). See [4] for more
discussions on TASEP on a ring and its equivalent models.

It is not difficult to see that the uniform initial condition for the TASEP of N particles on a ring of size
L corresponds to the uniform initial condition in the following set

IN(L) ={(y1, 42, ,yn) €ZN : =L+ 1< y; <yp <--- <yn <0} (3.14)

in the system of TASEP on Xy (L). Moreover, for any Y € Yy (L), we have the following relation between
two models

P (ht(¢) > b in TASEP on the ring with initial configuration Y') = Py (x4 (t) > a) (3.15)

where the notation Py denotes the probability of TASEP on Xy (L) with initial configuration Y € Y (L),
and xy (t) denotes the location of the k’-th particle at time ¢. The relation (3.15) interprets the distribution
function of hi(¢) (for TASEP on a ring) as that of particle location x/(t) (for TASEP on Xn (L)) at time ¢.
The parameters £, b on the left hand side of (3.15) could be arbitrary integers satisfying b = ¢ (mod 2), and
k', a on the right hand side are determined by

b—{—2 b—¢
! [EE—
k_N[ %f}+N+1 5
(3.16)
Y Lt} BN
a = oN .

Here the notation [y] denotes the integer part of y, i.e., the largest integer that is less than or equal to y.
From the above formula (3.16) it is easy to see that 1 < k' < N. Hence z(¢) is well defined in TASEP on
Xn(L).

Now we sum over all possible initial configurations Y € Yx (L), each of which has probability (—i) We
N

obtain .
P(hi(t) 2b) = = Y. Py(aw(t) >a). (3.17)

V)
N YeYn(L)

4We first consider the case when 1 < £ < L. In this case, hy(£) = 2J,(t) + ho(€) = 2Jp(t) + £ — 22?21 7;(0). Therefore
h¢(€) > b if and only if Jy(¢) — Zﬁ:l 1;(0) > (b — £)/2, which is further equivalent to x4/ (t) > a. The case when £ > L + 1 or
£ < 0 follows immediately from the fact that h¢(¢) = hs(¢ — L) + (L — 2N).



On the other hand, the one point distribution function for TASEP on Xy (L) with arbitrary initial
condition Y € Xy (L) was obtained in [4] (see Proposition 6.1). More explicitly, we have

Py (zp (t) > a)

_ )R =DV
G il ?{ det

2mi

. . ’ . ’ N
1 Z wI K L (g 4 1)y —d—atk +1etw] dz (3.18)
1,j=1

1I—(k—1)L’
LweRz w+p z1—('=1)

where the integral is along any simple closed contour with 0 inside. To proceed, we need the following two

lemmas.
Lemma 3.1. Suppose wy,ws, - ,wn € Ry, then we have
) 4N - N ) N
> det [wl(wi+ 17 =det [w! Mg+ )TN ()Y R det [w (wi + )7V
YeYn(L) 4,j=1 ,j=1 i,j=1
(3.19)

Lemma 3.2. (Theorem 7.2 in [4]) Suppose z is in the annulus 0 < |z| < 1o as in (3.4). For any integer k,
we have the following identity’

= O (b, 1) det (T4 K2 10 ) -

1
)= DN+ ,(k+N-1)L gt | =
(1) 2 et |7 D p—

N
wj—i—k—N+1(w + 1)—z+ketw]
wER,

ij=1

(3.20)

We first assume Lemma 3.1 is true. By inserting (3.18) to (3.17) and then applying Lemma 3.1, we have

1 (_1)(kl_2)(N+1) 1 wj—i—k’-‘rl(,w_'_ 1)—N—a+k’+1etw
P >ph)= —Ap~— —
(he(€) = b) Ol 5 7{ det | - > o

dz
Zl- (K —2)L"
irj=1

wWER,
(3.21)
Note that by using (3.3) this expression is invariant under the following changes: a — a— L and k¥’ — k' — N,

therefore we can replace a by a — L {%} ={+1land k' by ¥ — N [w} = k+ N. The above equation

2N
equals to
. N
LA (_1)(k+N—2)(N+1) f*det l Z wj—z—k—N+1(w+1)—£+ketw dz (3 22)
(1%[) k 271'1 L o w +p Zl—(k-‘rN—Q)L' .

i,j=1
By restricting z in the annulus 0 < |z| < ry and applying Lemma 3.2 we immediately obtain (3.11).

It remains to prove Lemma 3.1.

We take the sum over Y € Yy (L) in the following order: yn, yn—1,--+ ,y1. Obviously, the summation
over Y € Yy (L) is equivalent to that over y;: y;—1+1 < y; < j— N recurrently for j = N,---,2 and finally
—L+1<y <1-N. Note y; only appears in the j-th column in the determinant on the left hand side
of (3.19). Hence if we take the sum over all possible y;, all other columns in the determinant do not change

except the j-th one. Then for each j = N,---,2, we have the following sum over y; on the j-th column
Z w (w; +1)%77 = w! " (w; + 1)V —wd T (w; + 1)v 10D, (3.23)
Yj=yYj—1+1

5The identity in [4] includes an integral over z. However, the proof is still valid if we drop the integral in both sides.



where the second term is the same as the (i,j — 1) entry thus the determinant does not change if we remove
this term. After taking the sum over yy,--- ,y2, we obtain a new determinant whose first column is the
same as before, but the j-th column is wg_l(wi +1)"N*1 for all j = N,---,2. Then we take the sum over
y1. Note that the bounds for y; are —L + 1 and 1 — N. Therefore we have

Z det {wf(wz + 1)741*7}1\7

yey W=
. . N
=det [wffl(wi + 1)V 5 () w! T (wi + 1)_L} o (3.24)
0=
—det [w] ™ (w; +1) "N Y et w7 g+ 1) "N DN )
' ij=1 v ij=1’

where we used the linearity of the determinant on the first column in the second equation. The notation
01(j) denotes the delta function. Comparing the above equation with (3.19), we only need to show

det [w{fl(wi I 1)—N+1—51(j)(L—N+1)]N
ij=1

, N
= (=1)N "1zl det [wf (w; + 1)_N} . (3.25)

i,j=1
By using the fact that (w; + 1)Y=V w! =z’ and then exchanging the columns, the above equation is further
reduced to

det [wf (w; + 1)_N+1_5N(j)} ZV‘—1 = det {wf(wl + 1)_N} jv,_l ) (3.26)

which follows from the simple identity 7]_ .
[w{(wi n 1)_N+1—5N(j>}:j:1 - [wg(wi + 1)—N}Z:1 [0:(4) + 0: (G + D]y - (3.27)
O

4 Asymptotic analysis and proof of Theorem 1.1

In this section, we focus on the asymptotics of the formula (3.11) and prove Theorem 1.1. We will follow

the framework in [4], where they computed the asymptotics of two similar formulas, one of which contains
exactly the same components CJ(\%)(Z; k,0), Kz(z,z , and det (I + Kf/i.z) as in this paper. However, there are

the following two differences:

(1) In [4], the asymptotics of C](\?) (z; k,£) and det (I + Kf,z z) was obtained with a special choice of param-
eters. More explicitly, the authors considered a case of discrete times ¢ and an order O(L) parameter

k. In this paper, we have a different setting of parameters, in which we let ¢ go to infinity continuously
and k grow as O(t).

(2) The formula (3.11) in this paper contains a new feature. Namely, we have the difference operator Ay,
which was not present in [4]. In the asymptotics, this Ay, after appropriate scaling, converges to the
differentiation with respect to x.

For (1), one can modify the calculations in [4] to the new parameters. However, in this paper we instead
consider a more general setting of the parameters and prove that both CJ(\?) (z; k,¢) and det (I + K, ;2,2 e) con-

verge simultaneously with this general setting. It turns out that all the choices of the parameters considered
in [4] and Theorem 1.1 in this paper are included in the general setting. See Section 4.1 for details.

For (2), we need to find the asymptotics of AkCI(\?) (z;k,0) and Ay det (I + Kf,z[) The first one can be
obtained straightforwardly, while the second one requires a bound estimate (uniformly on L and z) of each

term in its expansion, which guarantees the convergence (uniformly on z) of Ay det (I + Kézlz 2)'
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4.1 Setting of the parameters

In this subsection, we list the following general setting of the parameters.
We suppose the density p = pr, = N /L satisfies ¢; < pr, < co for some fixed positive constants ¢y, cs.
We assume
t=tp = ——" 324 0(L), (4.1)
pr(l—pL)
for some fixed constant 7 > 0. Moreover, suppose ¢ = ¢;, and k = kj, are two integer sequences which are

bounded uniformly by O(L?/?) and satisfy

dist (eL —(1- 2LpL)tL - 7L, Z) _ oL, (4.2)

and®
kr +pr(1—pr)ty — prlL

PP (1= pr)2sty

=z +0(L7V?), (4.4)

where v = 2w7?/% and z are arbitrary fixed real constants, and the notation dist (u,Z) denotes the smallest
distance between u and all integers.

Recall that the asymptotics along the line ¢, = (1 — 2pp)tr, + (v + 1)L is the same as that along
¢, = (1 —2pp)ty + L. See (1.5) and its discussions. The condition (4.2) means that the points should be
asymptotically on the ¢;, = (1 — 2pp)tr + (v + Z)L lines.

To understand the second condition (4.4), we need to view kp (more precisely k;, + Np) as the label
of the particle which is at the given location 7 at time t;. First we extend the TASEP on a ring to a
periodic TASEP on Z by making infinitely many identical copies of the particles on each interval of length
L. More precisely, we define x4 n(t) = x(t) + L for all k and t. With this setting, the labels of particles
are in Z instead of {1,2,--- ,N}. (4.4) means the label of the particle located at the site ¢, at time ¢, is
prlr —pr(1—pr)tr at the leading order (more precisely N+ pr¢r, — pr.(1 — pr)tr, due to our choice of initial
labeling: the label is asymptotically N at site 0 initially), plus an O(t}:/ 3) fluctuation term. The term pr¢;,
(assuming ¢, > 0, otherwise —¢j, instead) is asymptotically the number of particles initially in the interval
[0, 1], while pr,(1 — pp)tr, is asymptotically the number of particles jumping through any given site during
time [0,¢L].

The above descriptions are in terms of stationary TASEP on a ring with uniform initial condition.
However, recalling the discussions at the beginning of Section 4, the formula arising in step initial condition
contains the same components CI(\?) (z; k,¢) and det (I + Kf,ge), whose asymptotics can be found within the
same framework. Thus the conditions (4.2) and (4.4) can also be interpreted similarly in terms of TASEP
on a ring with step initial condition.

Now we consider three different choices of parameters satisfying (4.1), (4.2) and (4.4).

The first choice is to fix the label of particle k; and then let ¢;, and ¢; go to infinity simultaneously.
This choice corresponds to the case when an observer focuses on a tagged particle. Now we rewrite the
conditions (4.2) and (4.4) as

(r, — (1 =2pp)ty, =L+ jL + O(LY?) (4.5)

6Here we view tr,,£;, and k; as parameters for convenience of our analysis. We can also view t7,£; and b = by, the height
of h¢(¢), as parameters. By using (3.12), we find that (4.4) is equivalent to

by, — (1 — QPL)KL — 2pL(1 — PL)tL

=z +O(LY?). (4.3)
_2pi/3(1 _ pL)Q/Sti/S

11



and
_ —~1/3 3
bp— (1= po)ty =p 'ky — »T/J'Ll/ (1- PL)Q/gtlL/ ; (4.6)
where j = jr, is an integer sequence. These two equations imply that

L 1
tn = —j+ L — = ki +O(LY?). (4.7)
PL PL PL

Now we want t;, growing as (4.1). Hence j grows as [TplL/ 2(1

the O(L'/?) in t;, and obtain

— pL)*l/le/2 . For simplification, we ignore

L T+/PL 1/2 Y 1
tp = — [L 2l + LL— <k, 4.8
pr VT —pL ) (48)

which is a time scaling of TASEP on a ring with step initial condition discussed in [4] (with their k, replaced
by k1, + N1). See Theorem 3.3 of [4].

The second choice of parameters is to fix the location ¢;, and let k1, and ¢, go to infinity simultaneously.
This choice corresponds to the case when an observer focuses on a fixed location. By an argument similar
to the previous case, we find that ¢;, can be expressed as

L 1-2 L 14
tr = L= 27 _jupp) 0L b (4.9)
11 =2pr| | /pr(1—pr) 1-2p;, 1-2pg
when pr, is of O(1) distance to 1/2, and
tp = 27L3/? (4.10)

when p;, = 1/2. Note that when p;, = 1/2, the line ¢, = const which describes the observer’s location in
the space-time plane is also the characteristic line with a constant shift. Hence this case is reduced to the
next one, which we will discuss later. These scalings were discussed in [4], see Theorem 3.4 of that paper.
The third choice of parameters is to fix the line £ — (1 —2pr)ty = vL. This is exactly the choice we pick
in Theorem 1.1. It means that an observe moves along the direction of the characteristic line. In this case,
the time parameter ¢;, can grow continuously, and the location ¢;, changes according to £1, —(1—2py)t;, = L.
Finally the label of particle grows by the formula (4.4). Note that in Theorem 1.1 we have the height hy, (£1,)
instead of the label of particles ky,, hence to check (4.4) one needs to use the relation kj, = @ +11in (3.12).

For notational convenience, we will suppress the subscript L in the asymptotic analysis from the next
subsection to the end of Section 4.

4.2 Preliminaries: choice of integral contour and parameter-independent asymp-
totics

In this subsection we follow the setting of [4] (see Section 8) and give the explicit choice of integral contour.
We also give the limit of R, jere and Ry right, and asymptotics of some parameter-independent components
in CJ(\?)(Z; k,¢). These results are all included in [4]. Hence we do not provide details.
In (3.11), we set
zl = (—1)Vrlz, (4.11)

where z is along any given simple closed contour within the unit disk |z| < 1 and with 0 inside. Then (3.11)

becomes
P (he(€) > b) = $
(v)

2miz’

d
?{z’LAk (e (asko 4 1) -det (14 K2,,,)) o (4.12)

12



here z = z(z) is any branch determined by (4.11). And it is easy to check the integrand above is invariant
for z — ze?™/L_ Therefore the choice of z, provided it satisfies (4.11), does not affect the integral.

We first consider the limits of the nodes sets Ry jefe and Ry yight With z scaled as (4.11). It turns out that
after rescaling these nodes sets converge to the sets S, 1ot = {€ : e=€/2 = z,Re& < 0} and S vight = {£ :
e=¢/2 = z,Re & > 0} respectively. The explicit meaning of this convergence is described as below.

Lemma 4.1. (Lemma 8.1 of [4]) Let z be a fized number satisfying 0 < |z| <1 and let € be a real constant
satisfying 0 < € < 1/2. Set zl' = (=1)Nrlz where vg = pP(1 — p)'=?. Define the map My jet; from
Rz,left N {U} : |’U) + P| < PV - pN6/4_1/2} to Sz,left by

M et (w) =&,  where § € S, jer, and |§ — W < N3e/4-1/2 log N. (4.13)
Then for large enough N we have:
(a) M et is well-defined.
(b) M ese is injective.
(c) The following relations hold:
SO ™Y C I M) € SOy Y, (4.14)

where (M jett) = M tete (Ratete N {2z 1 |2+ p| < py/T— pN/47Y/2}) | the image of the map My jets
and Si,cl)eft = Sy et N{E 1 €] < ¢} for all ¢ > 0.

If we define the mapping My right 0 the same way but replace Ryt and S;ieft bY Ry right and S right
respectively, the same results hold for My right-

Then we consider the limits of g, jeft (W), @z right (w) and the following function

N L—N
HUERz,left (_u) H'UeRz,right (U + 1)

HueRz,left HUERz,ngm (U o u)

CV(2) = (4.15)

The first two functions arise from the kernel Kf,zy 41> and the third function C](\i)l (z) is part of C](\?) (z;k,0).

The limits of these three functions were obtained in [4] as below.
Lemma 4.2. (Lemma 8.2 of [4]) Suppose z,z and € satisfy the conditions in Lemma 4.1.

(a) For a complex number & = &y satisfying ¢ < || < N¢/* with some positive constant ¢, set wy =
wn (€) = —p 4 pv/IT— pEN~Y2. Then for sufficiently large N

Gotete(WN) = (W + 1)ENehern(&2) (1 L O(N~210g N)) (4.16)
if Re& > ¢, where
L (€ —y*)/2
Bles (€, 2) := —E 3 Liy /o (ze - ) dy. (4.17)
Similarly for sufficiently large N
Garight (W) = (—wy) Vel ©D (14 O(Nlog N)) (4.18)
if Re§ < —c, where
1o _
f)right(f,z) = 7\/?/ L11/2 (26(52 y2)/2) dy (419)
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(b) For large enough N we have
@) (z) = €25C) (1 + O(NH/?)) : (4.20)

ﬂdy is defined in (2.3).

where B(z) = & [ (Lil/y

i((luljill); along the line Rew = —p. These
estimates were obtained in [4], see (9.36) and (9.37) of that paper. Below we give a quick summary of
these estimates. Write w = —p + p/IT — pEN~1/2, where ¢ € iR. Tt is straightforward to check that when
€] < N/t

Finally, we need the expansions of two functions ¢,(w) and

_ _ 1 2p—1 _ _
Nlog(1 = V1= pEN~Y2) 4 (L= N)log ( 1+ —L=eN"12) = ——¢2 4 T g?N=1/2 L o(V!
(4.21)
here and below log denotes the natural logarithm function with the branch cut R<p.
Together with (3.2) and (4.11), we have for |¢| < N</4
(W) _ (1_ \/ng—l/z)N |4 P N2 b 1
al 8 Vi-»p
6_52/2 5 2p 1 6_52/2 (4.22)
_ c == 1 _ 3N—1/2 19) Ne—l )
z ( +3\/1—pe*52/2—z5 +0( )
When |£] > N4 it is easy to check that
(W) | ones2
L >e (4.23)
for some positive constant c.
Similarly, for [¢] < N¢/4, we have
L(w + p) 1 1/2 L—=2p 12 ~1
= ENY2(14+ —LeN"V2 4 O(N ). (4.24)
w(w + 1) n/1—p Vi—-p

4.3 Asymptotics of C](\?)(z; k,?0)

As we discussed before, the asymptotics of CI(\?) (z; k, £) was obtained in [4] with a specific choice of parameters.
The idea is as following: write C](\?)(z; k. 0) as C](\i)l (z) -C](\?’)z (z; k, £), where C](\?’)l (z) is defined in (4.15) and
@k )= ] (~w*' J[ @+1)~" e (4.25)
UE Rz lett VE Ry right

With the parameter setting in [4], they obtained (see Lemma 8.7 in [4])

. 2 /3 z)+T z €e—

Jim O, (zik, 0) = 7P A (1 +O(N 1/2)), (4.26)
where A;(z) = —\/%Lig/g(z) and Ay(z) = —\/%Lig)/Q(Z) are defined in (2.2). Together with (4.20) in
Lemma 4.2, one has

C](\?) (Z; k,g) _ eT1/3ajA1(Z)+TA2(Z)+2B(Z) (1 + O(N671/2)> ) (427)

The goal of this subsection is to check the proof of (4.26) in [4] also works under the more general
setting (4.1), (4.2) and (4.4). Considering that the asymptotic analysis in [4] was focusing on a different
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case which corresponds to the flat initial condition and (4.26) appearing in the step case was only discussed
briefly, and that some parts of the proof will be used in later discussions, we would like to go through the
main steps of the proof of (4.26) with the more general settings in this paper. However, we will not discuss
many details of the calculations unless they are necessary.

First we write the summation in log CJ(\?y)Q(z; k,?) as an integral. By using a residue computation, it is
easy to see that

(k—1) Z log(—u) + Z (=04 k)log(v+1) + tv)

e e o
" _ _ wTp aw
2 | (@)~ Galop)
where
Ga(w) = (k—1)log(—w) + (£ — k) log(w + 1) — tw. (4.29)

Now we change variables w = —p+py/T — pEN~1/2 where £ € iR. Recall (4.23), it is sufficient to consider
the integral over |¢| < N since the integral for [¢| > N/ is exponentially small O(e*CNE/Q). With this
restriction and the assumptions that £, k are bounded by O(L?/?), we have

Ga(w) — G2(—p)
_—k+pl—p(1—p)t
R

For notational simplification we write the first three terms a1¢ + a2&? + a3€2. By using the conditions (4.1)-
(4.4), it is direct to see that

(2p—Dk—p20 , —(1=3p+3p>)k+ p*t (4.30)

3 e—1/2
21— p)N 50 ppaNeE b TOWNT).

£+

_ 2(1 —-2p)a p(—k + pl _
a1 = -3z + O(N"?), a3 = O(N'/?), a3 = O(1), 77(1 = pN)l/z +3a3 = 7(1 = pNS/)Z =7+O(N"1/2),
(4.31)

Now By plugging (4.30), (4.22), and (4.24) we obtain that (4.28) equals to an exponentially small term
O(e=*N""") plus

i e/4 2
B / N 2(a1€% + a2&® + azé?) 1_ 2p—1 e ¢/ §3N71/2 1+ 1-2p €N71/2 % 4 O(Nefl/Q)
_iNe/4 e €/2 — 2 3T —pe€/2 -2 VIi=p 27 '

(4.32)

By using the symmetry of the integral domain and integrating by parts, we find that the above quantity
equals to

N/ iNe/4
—a /N ig_ _M +a /N L%_FO(NE—U%
1 iNers e=€/2 =z 2mi 3yT—pN1/2 ° iNess €782/2 — zomi (4.33)

=—ardi(z) + (_% + 303) Ag(z) + O(N~1/2)

. 2 d . 4 d
where 4, (z) = _\/%Llf‘/?(z) = Jree=o 6—5275/2,22%1 and Ap(z) = _\/%LIS/Q(Z) = =3 Jre¢—o %Tﬂi are

defined in (2.2). Now we insert (4.31) into the above equation, we obtain that the right hand side equals to
32 A(2) + TAs(2) + O(N<~1/2). Combing with (4.28), we have (4.26).
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4.4 Asymptotics of AkC](\?) (z; k,0)
By definition, we have
APz, ) =CP (k0 | T (v J[ @+1-1]. (4.34)
UE Rz left VERZ right

By applying (4.27) and the following Lemma, we obtain

A 1
AC? (s ) = 1 _15\)71/2 o7/ w AL (2)+7 A5 (2)+2B () (1 i O(Nefl/2)) 7 (4.35)

where € is the same as in the previous subsection.

Lemma 4.3. For any fized € satisfying 0 < € < 1/2, we have

Aq(2) —1/2
log(—u) + log(v41) = ———— (1+O(N/?)) . (4.36)
ue;,left 'Ue};,right 1= pN1/2 ( )

Proof. By a residue computation similar to (4.28), we write the left hand side of (4.36) as

—p+ico w+p dw
Lz" 1 —p)) —1 1)/(1 - _ . 4.37
[ st/ (—p)) ~loa((w + /01~ ) T (437)
The rest of the proof is similar to (4.33) but much easier. We omit the details. O

. (2)
4.5 Asymptotics of det (I + Kz;k,e>

Similar to CJ(\?) (z; k,¢), the asymptotics of det (I+Kf;2,g) was obtained in [4] with a special setting of
parameters. The argument can be applied here for the general settings by a modification. Below we only
provide the main steps and omit the details.

By using the property that w” (w + 1)Y=~ = z! for arbitrary w € R,, we rewrite the determinant as
det (I + Rf/zz) with the kernel

- 1
KC) (w1, uz) = ho(uy) (4.38)
z;k,( Ue]g;gm (u1 — v)(u2 — v)hg(v)
where )
92(W) Qg right (W) Cwe Ry,
w + P w2N )
hg(’w) = hg;hg(w) = , 9 (4.39)
92(w) qz,right (’LU) R
w+ 0 ’LU2N , weE z,right»
with . (D)
Ba(w) 0w+ 1)
= go. = - - 4.40
9200) = g2 () = 5 PN (—p+ DIED (440
and
Go(w) = o e(w) = w2 (w + 1) ~EFEFL v, (4.41)
Here j = j1, in (4.40) is an integer sequence satisfying
0 —(1—2p)t —~yL = jL+ O(LY?). (4.42)
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The existence of such j is guaranteed by (4.2). Moreover, since we assume ¢ and £ are both at most O(L?/?),
we have j < O(L'/?).
Now we consider the asymptotics of ho(w). Write w = —p + py/IT — pEN~'/2. Then we have

—Ga(w)+Ga(—p) W(w + 1) 172N P ~1/2 JE=

where Gy is defined in (4.29). If we further assume |¢| < N4, the asymptotics of go(w) can be obtained by
using (4.30) and (4.21)
2 3
g2(w) = MO (1 L O(NTH2)), (4.44)
where
by = —a; =773 + O(N_l/Q),

1. 1 (1=2p)(—pl+k+p(1l—p)t
by = —ay — Lj= Ly 1=20)(n p(1 = p)t)

1
= 57O,

2 2 2p(1 —p)L

201 .y (1=3p+3p*)(k—pt) + (20 —1)’p(1 —p)t +O(L) 7 -
by = — N2 = =—= N2,
° 4+ 3v1— p‘7 3p3/2(1 — p)3/2L3/2 3 +O( )

(4.45)
Here in the second and third equations of (4.45) we used the conditions (4.4) and (4.1). Thus we have

ga(w) = &7 PEHFEFE (1L O(N2)), (4.46)

Together with Lemma 4.2 (a), we immediately obtain the asymptotics of ha(w) when |w+p| < py/T — pN¢/%,
For the case when |w + p| > py/T— pN</4, one can show that ho(w) decays on w € R, 1oy and grows on
W € Ry ight exponentially fast as w — oco. The proof is similar to the case discussed in [4] and we do not
provide details. The explicit asymptotics is described in the following lemma, which was proved for the
special parameters in [4].

Lemma 4.4. (Lemma 8.8 of [4]) Let € be a fized constant satisfying 0 < e < 1/2.
(a) When u € Ry ey and |u+ p| < py/I— pN¢/4=1/2 e have
N1/2 1.¢+3,.1/3 102
ha(u) = — e e2Inent (£:2) =3 7& 4T et 3987 (1 L (N~ Y2 10g N)), (4.47)
pV1—pg

where £ = % and Byigns is defined by (4.19), and the error term O(N<~1/21log N) in (4.47) is

independent of u or &.

(b) When v € Ry yigne and |v + p| < py/T— pN/471/2  we have

3(1 _ ~)3/2 L
h tw =" (§N372) 2 (€2 H7¢=rHBaC= 3¢ (1 4 (N1 1og N)), (4.48)
2

where ( = w and Yiege is defined by (4.17), and the error term O(N<~'/?1log N) in (4.48) is

_ pyI=p
independent of v or (.

(c) When w € R, and |w + p| > py/T — pN/*=/2, we have

ha(w) = O(e= M), w € Ry et (4.49)
o 1 3¢/4

ha(w) O(e N, w € Ry rignt- (4.50)
Here both error terms O(e_CNBEM) are independent of w.
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The Lemmas 4.1 and 4.4 indicate the following result

lim det (1+ KL, ) = det(1-K2),,,,), (4.51)

n—oo

where ICQ% is an operator on S, jef as defined in (2.5)7. A rigorous proof needs a uniform bound of the
Fredholm determinant on the left hand side and an error control when we change the space from R, to
S, both of which were considered in [4] for their choice of parameters. Their argument also works for the
general setting of parameters. Therefore we omit the details.

4.6 Asymptotics of Ay det <I + KZ(?)

Similar to the previous subsection, we write Ay det (I + K;Q,zz) as Ay det (I + f(gﬂz)
We first need the following two lemmas.

Lemma 4.5. For any fixed positive integer m, we have

_ m
nlggo leﬂ Z Aj det [Kf,gye(uz,u])} -
WL, Um € Rz left “= (4 52)
d m '
- Y 4 det |-k (€6
&1, 6mES> left Yly=r1/32 nI=t

Lemma 4.6. There exists some constants C' and C' which do not depend on z, such that for all positive
integer m we have
vy

UL, Um € Rz left

m

Ay det {f(;;z]z,e(ui,uj)} < 2mC™ (4.53)

ij=1

for all N > C'.

We assume both lemmas hold. By using the dominated convergence theorem and the two lemmas above,

we have
. — 1/2 ( ~<2>): 1 d [_ @) (¢, .}m
A}gnoo\/l pN'2Apdet(T+ K, ,) = > ol 37| > det [—K3) (&, &5) it (4.54)
m>1 Y=T2T €1, ,EmES: left
Moreover, the right hand side is uniformly bounded. This further implies % P det (I - ICQZ),) is well
y=71/3g
defined and uniformly bounded. The above result can thus be written as
: — 1/2 = (2) >:i ( _ <2>)
Tim /T— pN'/2A det 1+ K3, i y:Tl/%det -2 (4.55)

uniformly on z.

Now we prove Lemmas 4.5 and 4.6.

"Note that biefs(C, 2) = Bright (—C,2) = —\/ 5 [ 75 Litja(e™"/2)dw for ¢ € S. righ-
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Proof of Lemma 4.5. Recall the definition of f(f;ie in (4.38). It is easy to check that

Ay det [f(f,zg(uu Ug)} "

ij=1

- Z Ay det { hosk.e(u;) ] m

V1 U € R vighe (i = vi) (s = vi)hane(vi) ] 1 (4.56)
-y (T ) e [ ot () r |
RS teen e A (e o

Here we emphasize the parameters in the function hg(w) to avoid confusion. Hence we have

/1 — le/2 Z Ay det [f(giz,e(“ia“j)}

UL, Um € Rz left

S IRV 1 (= I PSR

el (Ui + 1)“1‘ (Uj - ’Ui)hg;k’g(vi) ij=1

m

ij=1

UL, Um € Rz left
V1, ,Um € Rz right

Note that there are only O(L*™) terms in the summation since |R,| = L, and when |u; + p| > p\/T — pN¢/*
or |v; + p| > py/T— pN/* for some i the summand is exponentially small (see Lemma 4.4). Therefore
we can restrict the summation on all u; and v;’s of at most py/T — pN¢/* distance to —p. We write u; =
—p4+pyT = p& N2 and v; = —p+ py/T — pGN Y2 where |&],|¢| < N/, Then by applying Lemma 4.4
we have

(4.57)
U Dright (&i) —Plers (Ci) m
= i —G)+O(NY2) ) d { ° O(N¢ /2100 N
&,..Zém (;“ S )> “lecE g g TONT e N s

+O(e= N7,
where the summation is over all possible &; and ¢; such that |&;], |¢;| < N/* and —p+py/T — p&;N~Y2 € Ry et
and —p + py/T — p(;N~Y2 € Ry yigns for all i = 1,--- ,m. And

¢right (5) = 2bright(£a Z) - %7—53 + %752 + Tl/3x§7

Bun(€) = =2 (¢, ) = 570+ 5267 + 7%,

for £ and ( satisfying Re£ < 0 and Re{ > 0. Recall that the error terms in (4.58) are all uniformly on
& and 7; (see Lemma 4.4), and note that there are at most O(N¢/?) elements by Lemma 4.1 part (c).
Therefore (4.58) equals to

(4.59)

m ePright (&) — et (Ci) m
& — ¢ det { ] + O(N(mF2)e=1/2y 4.60
§1,--Z,Em ;( ) &iGi(& — Cz>(€J - G) i,j=1 ( ) ( )
C1yer Cm

Now by using Lemma 4.1 we know that these & and (;’s are chosen from a perturbation of I(My lef;) and
I(MQp right), the images of My jer, and My yighy respectively. The perturbation size is uniformly bounded
by N3¢/4=1/2]og N. Similar to the reasoning from (4.58) to (4.60), we can replace (4.60) by

m [ ePright (&) —Prest (i)

Z Z(& — Gi) det §iGi(&i — G)(&5 — Gi)

&1y bm €N M lery) 1=1
C1y s m EI(MN right)

} + O(N(m+2)e=1/2) (4.61)
ij=1
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If we choose € small enough such that (m + 2)e < 1/2, then the above quantity converges to

e®rigne (§)—drere (¢i) 1™

Z Z = Gi) det {fi@'(&i = G)& =Gz (4.62)

€1, 6mESy tery 1=1
Clu"'a(mesz,right

Finally we check that (4.62) equals to the right hand side of (4.52). This follows from the facts that

Bright (€, 2) = —\/% ffoo Lij (e~ */2)dw for all € € S teft, and bieg (€, 2) = m f Liy /o(e e~ 2)dw for
all ( € S, right, and that S vight = =S5 et O

Proof of Lemma 4.6. We first prove the following Claim.

Claim 4.1. There exist a positive constant C' and C' uniformly on z such that

Z Z [A(ur, u2)]* < C (4.63)

U1 € Rz left \| U2E€E Rz left

for all N > C', where

A, us) = (o (o) B B(uz) Y () (164)
’ vet 11 = vlluz = vllh2(v)]
and
w) e 14 et A =plwl s (|0 = pw plw+1)
p =1+ HE o v (Lol [ +)- e

Proof of Claim 4.1. Note that E(w) is always positive and bounded by ¢; N/ 4 ¢, uniformly on R,. On
the other hand, hs(u) and hg(v)_1 are exponentially small when v € Ry et , v € Ry rignt are of distance
> O(N</*71/2) see Lemma 4.4 (c). Thus it is sufficient to prove the following inequality

2
|E(v)[?
|ha(u1)ha(u2) E(u1)? E(uz)?| <C.
ule;zlcft UQE;z.loft Uegight |U1 - UHU2 - U||h2<v)|
\u1+p|§NE/471/2 |uz+p\§Né/471/2 \v+p\§N€/471/2
(4.66)
On the other hand, it is easy to check that
2
E(—p+p/1—pEN"?) =3+ Vi O(NTV2) <34 Cy[¢| + O(N1/?), (4.67)

uniformly for all |¢| < N¢/%, here C} is a constant independent of N (recall that p = pr € (c1,¢) depends
on L). We denote
E(—p+p\/1—pEN~Y2) ;= the right hand side of (4.67). (4.68)

Then (4.66) is reduced to

2
~ - E(v)|2
3 S ) he(w) B2 B | Y B () <c.
u1 € Ry left U2 E Rz left VERZ right |u1 o UHu2 - U||h2(v)|
lur+p| SN2\ Jugp| <N/A71/2 [otp|<N/AmL/2
(4.69)
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Using Lemmas 4.1 and 4.4, we see that the left hand side of (4.69) converges to

2
e(gright (€1)+ Prigns (€2)

§162

|67¢;1eft(c)|
Z " & —Cll&2— ¢l ) 7

CES. rig

(4.70)

IIENEDD

£1€8S% 1ot \ £2€52 right

as N — 00, where uigni(€) = drignt (€) + 21og (3 + C11€]) and iert(¢) := drere (¢) — 21og (34 C1[€]). The
rigorous proof of this convergence is similar to that of Lemma 4.5 and hence we do not provide details. Also
it is easy to see that (4.70) is finite. Therefore (4.69) holds for sufficiently large N. O

Now we prove Lemma 4.6. This idea is to express the summand on the left hand side of (4.53) as a sum
of determinants det [A(")(ui, u])] where A has similar structure of A in Claim 4.1, and then apply the
Hadamard’s inequality.

The first step is to write

det [ (i, ;)] - Y de Vo) Baieeu;) (4.71)

(u; — v;)(u; — vi)howk,o(v;) ij=1

4,J=1
V1,0 7”m€Rz,right

by using a conjugation, here /ho.r ¢(u;) is the square root function with any fixed branch cut. Denote

iy Vhawe(w)y/howe(u)
Hhal 50 = 6 = o) (472)

Similarly to (4.56), we have

N'2A, det {I?z(?gyg(uwj)]ij:l
_NL/2 3 ﬁw_1 det [Hy, ¢ (uz, uj;v;)]"
= ('U' n 1)u k0\Ui, Wy, Ug i,j=1
V1, Um € Ry right \1=1 ! !
m n—1 m
:Z Z N1/2 (ll)(qu) — 1> H T(u + )det [( P k,e(ul Lt )} (4.73)
=S (1-p)uy i (1—plu; —p(v; +1) ij=1 .
m n—1 m
S N2 (1 ~ —plon + 1)) 1l —pit D) G {(1 — p)vi o (us, “J’?“i)]
TR (1-p)v, pale (1—p)v; —p(v; + 1) i,j=1
m m m ~ m
=3 den (Ao w)[[_+ Do [A )]
n=1 nI=t n=1 we
where
ol tl) g Qo i), 1<i<n—1,
( N p)uz VE Rz right —,O(’U+ )
—p(un +1) (1 — p)vHpp(ui, ujzv)
A( )(u“uj) = (1 _ p>un eRZ —p(v + 1) , =N, (4.74)
VE Rz right
Z (1—p)ka,z(Ui,Uj5U), n+1<i<m,
vE Ry right —,O(v + 1)
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and

> Hieluiugsv), 1<i<n-1,
VE Ry right
i(n) Z N1/2 M—l Hio(ui,ujsv), i=n
A y) = —p(v+1) AL E T ’ (4.75)
vE iz, right
s ol i), nil<icm
—p(v+1)
VE Rz right

It is easy to check that |A(™ (u;, u;)| and [A® (u;,u )| are bounded by |A(u;, u)| defined in the Claim 4.1.
By Hadamard’s inequality, we have

H D 1A (ug )2 <H S A, ) (4.76)

i=1 1<j<m =1 u' € Ry lett

det [A( ) (i, uy) ]

for all distinct w1, -+ ,Um € Ry jesr. As a result,

m

Z 'det [A(")(ui, u])} et < Z ﬁ Z A(uiyu

UL, Um € Ry left U1, Um €ERg et =1 \| u/ €ERy lest

all distinct (477)

= X S AP | <cm

UERZ teft \| U ERz left

by the Claim 4.1. Similarly we have

~ m
3 det [AW (ui,uj)} Cl<om (4.78)
UL, Um € Rz left Li=1
all distinct
Also note that Ay det | K. ,2 Z(uz,uj)}m =0 if u; = u; for some 1 <14 < j < m. By combing (4.73), (4.77)
1,0=1
and (4.78) we obtain (4.53). O

4.7 Proof of Theorem 1.1
Now we prove Theorem 1.1(a). By using the estimates (4.27), (4.35), (4.51) and (4.55), we obtain

lim \/iNl/QAk( & (2 k) - det (I+K§,§))

n—o0
(4.79)
(eyAl(z)+TA2(Z)+2B(Z) det (I - ICS&)) .

4
-

y=T11/32

Furthermore, by the discussions below (4.51) and Lemma 4.6, we know the left hand side of (4.79) is uniformly
bounded on z.
On the other hand, by using the sterling’s formula and (4.11), we obtain
()N 1 NY(L - N)! V2r

() VIVt~ TN e Sy ws ~ . GO (450)

Theorem 1.1 follows immediately by inserting the above two estimates into (4.12).

22



A Tail bound of the limiting distribution

In this appendix, we give some tail bounds related to the function Fy. These estimates are not optimal,
however, they are sufficient to show that (1) Fy(z;7,7) is a distribution function, and (2) the n-th moments
of hep (€L)—(1=2p)¢L—2pL(1—pL)tL
_2p1L/2(1_pL)1/2L1/2
and ¢z, are defined in Theorem 1.1. The second statement follows in the same way as Theorem 1 in [3].
For simplification we only consider the case when 7 = 1. For other values of 7, the statements and proofs

converges to that of fR x"dFy (x;7,y) for any finite n as L — oo, here py,, £y,

are the same (with different constants).

Define
F () e p Pealle) =0 = 200)0 =200 (L= pu)te (A1)
U T 2/3 2/3 1/3 - :
—2p7"(1 = pr)?/3t
. () (=DM [ ) @) dz
Gy (x) = NN CP 2k, 0, +1) - det (I + KZ;WLH) et (A.2)
Np

where the parameters and notations are the same as in Theorem 1.1, and we suppress the parameters 7 = 1
and «y in the indices for simplification, and

k=14 prlr — pr(l—po)tr +apy *(1— pr)?3t,/. (A.3)

By using Theorem 3.1, it is easy to check

F(L) — —G T A4
v () ng/g(l_pL)Q/3dx v (@) (A4)

where Z is an point satisfying & = x + O(t;l/g).
Proposition A.1. (Left tail bound of FT(JL)) There exist constants a > 0, ¢ > 0,C > 0 and C' > 0, such
that

FiP (z) < emele® (A.5)

for allz < —C and L > C'|x|.

Proposition A.2. (Right tail bound of Gg“)) There exist constants a > 0, ¢ > 0,C > 0 and C' > 0, such
that

@

—-1/3
tL / (L) —cx
Gyi(z)| <e (A.6)

P P —
2/3
PP (1= pp)?/3

forallz > C and L > C'x%.8

Although we use the same notations of constants a,c,C and C’ in the above two propositions, their
values are not the same.
We also remark that these two propositions are analogous to Proposition 1 and 2 in [3].

A.1 Proof of Proposition A.1

The idea of the proof is to map the periodic TASEP to the periodic directed last passage percolation (DLPP).
The relation was discussed in [4] and [5] and we refer the readers to Section 3.1 of [5] for more details. Here
we give a brief description.

8For general 7, the term x 4 1 in (A.6) should be replaced by = + 7.
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We first introduce the periodic TASEP. This is equivalent to TASEP on Xy (L) except we have infinitely
many copies of particles, which satisfy x4 n(t) = z(¢) + L for all k € Z.

Similarly to the mapping between the infinite TASEP and usual DLPP, see [11], there is a mapping from
periodic TASEP to periodic DLPP described as following: Let v = (L — N, —N) be the period vector, and
I" be a lattice path with lower left corners (i + xn4+1-:(0),4) for ¢ € Z. It is easy to check that I" is invariant
if translated by v. Let w(q) be random exponential variables with parameter 1 for all lattice points q which
are on the upper right side of I'. We require w(q) = w(q + v) for all q. Except for this restriction, all w(q)
are independent. We then define

Hy(q) = max Y w(r) (A7)
where the maximum is over all the possible up/right lattice paths from p to q. We also define

Hr(q) = max Hyp(q). (A.8)

Now we are ready to introduce the relation between particle location in periodic TASEP and last passage
time in periodic DLPP, see (3.7) in [5],

Py (24(t) > a) = Py (Hr(N +a—k,N +1— k) <), (A.9)

where we use the notation P, to denote the probability functions in periodic TASEP and the equivalent
periodic DLPP model. Using (A.9) and the relation between height function h:(¢1) and the particle location
x(t), see (3.15), it is straightforward to show the following

F3P (x) =Py (Hr(q) < tz) (A.10)
where q = (q1,q2) with
ar = (1— pr)?tr +7(1 = pr)L —2py > (1 — p)?/?t)/°, (A.11)
av = pity —yprL — ZL’PQL/S(l - PL)2/3t1L/3-

The rest of this section is to show that there exist constants a > 0, ¢ > 0, C' > 0, and C’ > 0, such that
Py (Hr(q) < tp) < e e’ (A.12)
for all x < —C and L > C’|z|. Then Proposition A.1 follows immediately.

The idea to prove (A.12) is to compare the periodic DLPP with the usual DLPP. This idea was applied
in [5] for periodic TASEP in sub-relaxation time scale. In the case we consider in this paper, we need a
relaxation time analogous of the argument. We first introduce some known results on DLPP model. The
probability space for DLPP is that all the lattice points q are associated with an i.i.d. exponential random
variable w(q), we use P to denote the probability associated to this space. Similarly to the periodic DLPP,
we denote Gp(q) the last passage time from p to q, and Ga(q) the last passage time from the lattice path
A to q. Finally we define B(cy,c2) == {q = (q1,q2) € Z2,;c1q1 < q2 < c2q1} for arbitrary constants c1, co
satisfying 0 < ¢; < ¢o. From now on we fix these two constants ¢1 and co. It is known that [11]

lim P <G(q) ) x) = Foun(a), (A.13)
la| o0 s(q)
q€B(c1,c2)
where d(q) = (y/a1 + v/a2)? and s(q) = (qlqg)_l/‘s(\/a + /@2)*3. The following tail estimate is also
needed, which is due to [1, 3],
s(q)
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for sufficiently large y > Cy and q € B(cy, c2) satisfying |q| > C1. Here c3, C; and C] are constants only
depend on ¢; and cy. The last result in DLPP we need is an estimate of the transversal fluctuations. Define
Bpg(y) to be the set of all lattice points r satisfying

dist (r,pq) < ylq — p|2/3, (A.15)

where pq denotes the line passing through the two points p and q, and dist (r,pq) denotes the distance
between the point r and the line pq. We also define m'*® (q) to be the maximal path from p to q in the
usual DLPP. The following transversal fluctuation estimate is currently known: There exist constants c4, Cs
and C% such that

P (75%(q) € Bog(y)) > 1 — e~ (A.16)

for all y > C5 and and q € B(cy, ¢2) satisfying |q| > C4. The analog of this estimate in Poissonian version of
DLPP was obtained in [7] and their idea can be applied in the exponential case similarly. We hence do not
provide a proof here, instead we refer the readers to a forthcoming paper [13] by Nejjar for more discussions.

Now we use (A.14) and (A.16) to prove (A.12). We pick k+1 equidistant points 0 = (), g ...  q®) = q
on the line Oq such that

dist (V,E) > CQ|q(i+1) - q(i)|2/33 i = 07 1; T 7k - ]-7 (A]'?)

here k is some large parameter which will be decided later. Note that dist (v,@) = O(|q|*/?), hence the
above inequality is satisfied as long as k is greater than certain constant.

Now note that Hr(q) > H,1y(q) = Ho(q) + O(1) since (1,1) is at the upper right side of to the initial
contour I' by definition, and Ho(q) > Zf:ol Hyo (qUD), therefore

Py (Hr(a) < t) < kPy (Ho(a™) < t1/k). (A.18)
On the other hand, by using (A.16) we know that
P, (Ho(q(l)) <t /k) <P (Gg(q(l)) <t /k)  emeak?/*lal = dist (v,0q) (A.19)
provided |q| > Cik. Finally, by inserting (A.11) and then applying (A.14), we have
i (Gg(q(l)) < tL/k:) < ek al (A.20)

provided |q| > C1k and = < —C, where ¢; and C' are constants. By combing (A.18), (A.19) and (A.20), we
obtain ‘
Py (Hr(q) < tr) < ke~ sk "Il 4 pemeak®Plal™*/ dist (v.0q) (A.21)

Finally we pick k = |z| and (A.12) follows immediately.

A.2 Proof of Proposition A.2

The proof is similar to that of Theorem 1.1 but we do not need to handle the difference operator. We only
provide the main ideas here.
First we do the same change of variables as in (4.12) and write

_1)N+1 B dz
G (x) = (()L> fz F(eR @k 0 1) - det (T4 K3 441)) C (A.22)
N
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Now we assume z is large and pick z on the following circle
|z| = e ™. (A.23)

With this choice of z, by using a similar argument as in Section 4.3 we have

C (25 k, £+ 1) = e# M@ +A242B() (1 L O(L1/3%)) = (1 -
@ ) (1+0(L71%)) N

(x + 1)z> (14 O(L™Y3)) + O(ze™°)

(A.24)
provided L > 5. By tracking the error terms, the term O(L~'/?) is analytic in z and can be expressed as

c+ 'z + O(z2L~Y/3) with ¢, ¢’ both bounded by O(L~'/3).
Similarly to Section 4.5, we write det (I + Kz(?lz,@rl) as det (I + f(f,ze) whose kernel is defined in (4.38).

By a similar argument as Lemma 4.4, one can show that the kernel decays exponentially
R (6, < ool 4e 2 (bt von) s

for all £, € S; 1orc and sufficiently large x. Here ¢ > 0 is a constant. The heuristic argument is as following:
Suppose £ = a+1ib € S, jort With a < 0, then a® — b? = 2z by (A.23). It is a direct to show that the leading
term in the exponent of h(u) in Lemma 4.4 (a) (after dropping the term %752, whose real part is independent
of £ and hence cancels with the counterpart from 1/h(v)) is

1 2 1 2
Re <—3§3 + Z‘§> = §a3 —xa < gl‘a < _§x3/2 < 0. (A.26)

Similar estimates for the leading term in the exponent of 1/h(v) in Lemma 4.4 (b) hold. Therefore we
have (A.25). Finally, by using (A.25) and (A.26), it is a direct to prove that

/2

det (I + f(f,g,z) =14+ 0(e ") (A.27)

for a different positive constant c. Since the above argument is similar to that in Section 4.5, we do not
provide details.
Finally by combing (4.80), (A.24) and (A.27), also noting that z' = (—1)Nr} 2, we obtain that

G0 (@) = /or(L = po)LV2 (¢ + 1+ O(e=7)) . (A.28)

Hence we obtain Proposition A.2.
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