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Abstract

The parabolic Airy process is the Airy2 process minus a parabola, initially defined by its finite-
dimensional distributions, which are given by a Fredholm determinant formula with the extended Airy
kernel. This process is also the one-time spatial marginal of the KPZ fixed point with the narrow wedge
initial condition. There are two formulas for the space-time multipoint distribution of the KPZ fixed point
with the narrow wedge initial condition obtained by [JR21] and [Liu22a]. Especially, the equal-time case
of [Liu22a] gives a different formula of the multipoint distribution of the parabolic Airy process. In this
paper, we present a direct proof that this formula matches the one with the extended Airy kernel. Some
byproducts in the proof include several new formulas for the parabolic Airy process, and a generalization
of the Andreief’s identity.

1 Introduction

The parabolic Airy process is defined to be A(α) = A2(α) − α2, α ∈ R, where A2(α) is the Airy2 process
introduced by Prähofer and Spohn [PS02]. It is conjectured to be a universal limit of the models in the
(1+1)-dimensional Kardar-Parisi-Zhang universality class with the narrow-wedge initial condition [BDJ99,
Joh00, Fer08, TW09, ACQ11, BC14, BCG16, FS23]. The parabolic Airy process can be defined by its
finite-dimensional distributions

P

(
m⋂
i=1

{A(αi) ≤ βi}

)
= P

(
m⋂
i=1

{
A2(αi) ≤ βi + α2

i

})
= det

(
I− χ1/2Kext

Ai χ
1/2
)
L2({α1,...,αm}×R)

, (1.1)

where α1 < · · · < αm, χ is the indicator function defined by

χ(αi, x) = 1(βi+α2
i ,∞)(x) =

{
1, x > βi + α2

i ,

0, elsewhere,
(1.2)

and Kext
Ai is the extended Airy kernel defined by

Kext
Ai (αi, x;αj , y) =


∫ ∞

0

e−z(αi−αj)Ai(x+ z)Ai(y + z)dz, if αi ≥ αj ,

−
∫ 0

−∞
e−z(αi−αj)Ai(x+ z)Ai(y + z)dz, if αi < αj .

(1.3)

Here Ai(x) denotes the Airy function

Ai(x) =

∫
ΓL

e−
1
3u

3+xu du

2πi
, (1.4)
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where ΓL is a contour on the complex plane that goes from ∞e−2πi/3 to ∞e2πi/3.
When m = 1, denote α1 = α and β1 = β. The one-point distribution of the parabolic Airy process is

given by
P (A(α) ≤ β) = FGUE

(
β + α2

)
, α, β ∈ R, (1.5)

where FGUE is the GUE Tracy-Widom distribution.

The parabolic Airy process can be viewed as a special case of the one-time marginals of the KPZ fixed
point, which is a space time random field constructed by [MQR21]. Similarly to the parabolic Airy process,
the KPZ fixed point is also conjectured and partially proved to be a universal limit of the models in the
Kardar-Parisi-Zhang universality class [MQR21, DOV22, QS23, Vir20, ACH24, DZ25]. The KPZ fixed point
depends on the initial condition. Throughout this paper, we will only consider one special initial condition
where the parabolic Airy process arises. Denote HKPZ(α, τ), with (α, τ) ∈ R× [0,∞), the KPZ fixed point
with the narrow-wedge initial condition HKPZ(α, 0) = −∞·1R\{0}(α), i.e., HKPZ(α, 0) = 0 when α = 0, and
−∞ elsewhere.

The KPZ fixed point HKPZ(α, τ) has the following well known 1 : 2 : 3 scaling invariance

HKPZ(α, τ)
d
= ϵ−1/3HKPZ(ϵ2/3α, ϵτ), (1.6)

where
d
= denotes the equation in distribution. Moreover, its one-time marginals are given by the (rescaled)

parabolic Airy process

HKPZ(α, τ0)
d
= τ

1/3
0 A

(
τ
−2/3
0 α

)
(1.7)

for any fixed τ0 > 0. Especially, for τ0 = 1, we can write

A(α)
d
= HKPZ(α, 1). (1.8)

On the other hand, the exact formulas of the finite-dimensional distributions of the KPZ fixed point
(with the narrow-wedge initial condition) HKPZ(x, t) for general space time points were also obtained in
[JR21, Liu22a]. The formulas in these two papers are different, with both being very complicated. The
formula in [JR21] is valid for points with different time parameters (and hence one still needs to use the
continuity of the KPZ fixed point and take an extra limit to get a formula for the case when the time
parameters are equal), while the formula in [Liu22a] holds for arbitrary space time points, which could include
some equal time parameters. It implies that the equal-time multipoint distribution formula in [Liu22a] also
gives the finite-dimensional distributions of the parabolic Airy process. However, a direct verification was
missing. The motivation of this paper is to give a direct proof that the equal-time formula of [Liu22a] indeed
matches the original multipoint distribution formula (1.1) of the parabolic Airy process.

Let us introduce the formula of [Liu22a] below. Define an order ≺ in R×R+ as follows, here R+ denotes
the set of positive real numbers. (α, τ) ≺ (α′, τ ′) if and only if one of the following two conditions are
satisfied:

(1) τ < τ ′, or

(2) τ = τ ′ and α < α′.

Theorem 1.1 ([Liu22a]). Assume the points (αi, τi) ∈ R × R+ are ordered (α1, τ1) ≺ · · · ≺ (αm, τm). We
have

P

(
m⋂
i=1

{
HKPZ(αi, τi) ≤ βi

})
=

∮
0

· · ·
∮
0

D(α1,τ1),...,(αm,τm)(z;β1, . . . , βm)

m−1∏
i=1

dzi
2πizi(1− zi)

, (1.9)

where z = (z1, · · · , zm−1), and D(α1,τ1),...,(αm,τm)(z;β1, . . . , βm) is a function defined in Definition 2.2.
Moreover, the symbol

∮
0
denotes the integral along a small circle around the origin, with the counterclockwise

orientation.
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As a special case, when τ1 = · · · = τm = 1 and α1 < · · · < αm, the formula (1.9) is the same as
P (
⋂m

i=1 {A(αi) ≤ βi}) by the relation (1.8) between the parabolic Airy process and the KPZ fixed point.
Thus, we have the following formula for the parabolic Airy process

P

(
m⋂
i=1

{A(αi) ≤ βi}

)
=

∮
0

· · ·
∮
0

D(α1,1),...,(αm,1)(z;β1, . . . , βm)

m−1∏
i=1

dzi
2πizi(1− zi)

(1.10)

for α1 < · · · < αm.
It turns out that (1.10) can be simplified to a Fredholm determinant with kernel defined on a contour on

a complex plane, see Proposition 2.1. We will also show that the simplified Fredholm determinant formula
matches the original formula (1.1) in the definition of the parabolic Airy process.

The proof relies on dedicated computations of the contour integrals appearing in the D function. While
most of the computations are directly related to the formulas of the parabolic Airy process, we also use the
following lemma in the proof, which is independent of the process and might be of its own interest. Note
that when m = 1, Lemma 1.2 is the well known Andreief’s identity [And86].

Lemma 1.2 (Generalized Andreief’s Identity). Let I1, . . . , Im be a partition of {1, . . . , n}. Denote by φ the
indicator function on ∪m

k=1Ik × Ik, i.e.,

φ(i, j) =

{
1, i, j ∈ Ik for some k,

0, elsewhere.
(1.11)

Let X ⊂ C be a measurable set and µ be a measure on Γ. Suppose Ai(x) and Bi(x), 1 ≤ i ≤ n, are two
sequence of functions on X such that Ai(x)Bj(x), 1 ≤ i, j ≤ n, are all integrable functions with respect to
dµ. Then we have

det

[∫
X

Ai(x)Bj(x)dµ(x)

]n
i,j=1

=
1∏m

k=1 |Ik|!

∫
Xn

det [Ai(xj)]
n
i,j=1 det [Bi(xj)φ(i, j)]

n
i,j=1

n∏
i=1

dµ(xi). (1.12)

Equivalently, we have

det

[∫
X

Ai(x)Bj(x)dµ(x)

]n
i,j=1

=
1∏m

k=1 |Ik|!

∫
Xn

det [Ai(xj)]
n
i,j=1

m∏
k=1

det [Bi(xj)]i,j∈Ik

n∏
i=1

dµ(xi). (1.13)

Proof of Lemma 1.2. The idea of the proof is similar to that of the Andreief’s identity. We denote S∗ the
set of permutations of {1, . . . , n} that map Ik to itself for all 1 ≤ k ≤ m, i.e., σ ∈ S∗ if and only if σ is a
bijection of {1, . . . , n} and φ(i, σi) = 1 for all i. It is direct to count that

|S∗| =
m∏

k=1

|Ik|!. (1.14)

Now we write

det

[∫
X

Ai(x)Bj(x)dµ(x)

]n
i,j=1

=

∫
Xn

det [Ai(xj)Bj(xj)]
n
i,j=1

n∏
i=1

dµ(xi)

=

∫
Xn

det [Ai(xj)]
n
i,j=1

n∏
i=1

Bi(xi)

n∏
i=1

dµ(xi)

=
1

|S∗|
∑
σ∈S∗

∫
Xn

det
[
Ai(xσj )

]n
i,j=1

n∏
i=1

Bi(xσi)

n∏
i=1

dµ(xi)

=
1

|S∗|
∑
σ∈S∗

∫
Xn

sgn(σ) det [Ai(xj)]
n
i,j=1

n∏
i=1

Bi(xσi
)

n∏
i=1

dµ(xi)

=
1

|S∗|

∫
Xn

det [Ai(xj)]
n
i,j=1

∑
σ∈S∗

sgn(σ)

n∏
i=1

Bi(xσi
)

n∏
i=1

dµ(xi),

(1.15)
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where sgn(σ) denotes the sign of the permutation σ. Note that the last summation gives the product of
the determinants det[Bi(xj)]i,j∈Ik . Together with (1.14) we obtain (1.13). The other identity (1.12) also
follows by noting that the determinant det[Bi(xj)φ(i, j)]

n
i,j=1 equals to the product of the determinants of

the blocks along the diagonal line, since the matrix [Bi(xj)φ(i, j)]
n
i,j=1 is a block matrix with off-diagonal

blocks all equal to zero.

The structure of this paper is as follows. In section 2, we will show that there is a way to simplify the
formula (1.10). More explicitly, the z-integrals can be evaluated, where the resulting formula can be further
simplified as a Fredholm determinant in Proposition 2.1. In section 3, we show that the new Fredholm
determinant formula matches (1.1). We remark that we actually obtained several different formulas for the
parabolic Airy process through the computations in this paper, see the equation (2.21), Lemmas 2.3, 2.4,
Proposition 2.1, and equations (3.5), (3.15). We put forward Proposition 2.1 as a representative since it is
the simplest formula that only involves the contour integrals.

Acknowledgements
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2 Contour integral formula of the parabolic Airy process

In this section, we will first state the main result, a contour integral formula of the multipoint distribution of
the parabolic Airy process in section 2.1. See Proposition 2.1. This formula is derived from the multipoint
distribution formula of the KPZ fixed point by [Liu22a]. We will introduce the formula of [Liu22a] in section
2.2, and prove Proposition 2.1 in section 2.3.

2.1 Contour integral formula for the parabolic Airy process

In this subsection, we introduce a multipoint distribution formula of the parabolic Airy process, which is
given by a Fredholm determinant expansion in terms of contour integrals.

Assume that m ≥ 1 is a fixed integer, and α1, . . . , αm, β1, . . . , βm are fixed real number. We also assume
that α1 < · · · < αm.

Define the functions
fi(w) = e−

1
3w

3+αiw
2+βiw, 1 ≤ i ≤ m, (2.1)

and

Fi(w) =

{
f1(w), i = 1,

fi(w)/fi−1(w), 2 ≤ i ≤ m

=

{
e−

1
3w

3+α1w
2+β1w, i = 1,

e(αi−αi−1)w
2+(βi−βi−1)w, 2 ≤ i ≤ m.

(2.2)

Denote CL := {z ∈ C : Re(z) < 0} the left half of the complex plane. Define a function K : ({1, . . . ,m}×
CL)

2 → C as follows,

K(i, z; j, u) =



∫
dv

2πi

f1(z)

f1(v)

1

(z − v)(v − u)
, i = 1,∫

dv

2πi

i∏
ℓ=2

∫
duℓ

2πi

f1(z)

fi(v)

∏i
ℓ=2 Fℓ(uℓ)

(z − u2) ·
∏i−1

ℓ=2(uℓ − uℓ+1) · (ui − v)(v − u)
, 2 ≤ i ≤ m,

(2.3)
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Re

Im

u

z

ui u3 u2 v

Figure 1: The integration contours in the definition of K.

where the integration contour of v is any contour on the right half plane that goes from ∞e−πi/5 to ∞eπi/5
1, and the integration contour of uℓ is a contour between −∞ and z on the left half plane that goes from
∞e−2πi/3 to ∞e2πi/3. Moreover, the integration contours of u2, . . . , ui are disjoint and ordered from right
to left. See Figure 1 for an illustration of the contours. Note that our choices of the integration contours
ensures the integrals are absolutely convergent and hence well-defined.

K can also be viewed as an operator on L2({1, . . . ,m}×ΓL) if ΓL is a contour on the left half plane such
that f1 decays sufficiently fast along the contour. More explicitly, we choose

ΓL =
{
−1 + re±2πi/3 : r ≥ 0

}
, (2.4)

with the orientation from ∞e−2πi/3 to ∞e2πi/3. With this choice, we define the Fredholm determinant
det(I +K) by its series expansion

det(I +K) =

∞∑
k=0

1

k!

∑
1≤ℓ1,...,ℓk≤m

∫
ΓL

· · ·
∫
ΓL

det
[
K(ℓi, ui; ℓj , uj)

]k
i,j=1

du1

2πi
· · · duk

2πi
, (2.5)

or equivalently by counting the number of i’s appearing in the first index in the above summation,

det(I +K) =
∑

k1,...,km≥0

1

k1! · · · km!

m∏
i=1

km∏
ℓ̂i=1

∫
ΓL

du
(i)

ℓ̂i

2πi
det
[
K(i, u

(i)

ℓ̂i
; j, u

(j)

ℓ̂j
)
]
(i,ℓ̂i),(j,ℓ̂j)

, (2.6)

where the row and column indices of the determinant above are chosen from the set {(i, ℓ̂i) : 1 ≤ i ≤ m, 1 ≤
ℓ̂i ≤ ki}. In the two formulas above, and other similar formulas in the rest of this paper, we view the empty
product, integral, or determinant as 1. Thus, the first term in both expansions is 1. Moreover, it is standard
to use the Hadamard’s inequality to verify that the above multiple integral and the summation are absolutely
convergent due to the fact that K decays super-exponentially fast along the contour ΓL.

Proposition 2.1. Recall α1 < · · · < αm. We have the following formula for the m-point distribution of the
parabolic Airy process A(α)

P

(
m⋂
i=1

{A(αi) ≤ βi}

)
= det(I +K), (2.7)

1One could choose the angle of the v-contour to be ±π/3, which is a standard choice for functions with a cubic exponent.
We choose ±π/5 here to be consistent with the rest of the paper, where we need to ensure not only 1/fi(v), but also 1/Fi(v)
which has a square exponent, to decay along the v-contour.
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where the Fredholm determinant det(I +K) is defined in (2.5).

When m = 1, we set α1 = α and β1 = β. The operator K is defined on L2(ΓL,dz/2πi) with kernel

K(u;u′) =

∫
ΓR

e−
1
3u

3+αu2+βu

e−
1
3v

3+αv2+βv(u− v)(v − u′)

dv

2πi
=

∫ ∞

0

L1(u;λ)L2(λ;u
′)dλ, (2.8)

where ΓR is any contour on the right half plane that goes from ∞e−πi/5 to ∞eπi/5,

L1(u;λ) =

∫
ΓR

e−
1
3u

3+αu2+βu

e−
1
3 v

3+αv2+(β+λ)v

1

u− v

dv

2πi

= −
∫ ∞

0

∫
ΓR

e−
1
3u

3+αu2+(β+λ′)u

e−
1
3 v

3+αv2+(β+λ+λ′)v

dv

2πi
dλ′,

(2.9)

and
L2(λ;u

′) = eλu
′
. (2.10)

Note that

(L2L1)(λ, λ
′′) = −

∫ ∞

0

∫
ΓL

e−
1
3u

3+αu2+(β+λ+λ′)u du

2πi

∫
ΓR

e
1
3 v

3−αv2−(β+λ′′+λ′)v dv

2πi
dλ′

= −eα(λ−λ′′)

∫ ∞

0

Ai(β + α2 + λ+ λ′)Ai(β + α2 + λ′′ + λ′)dλ′,

(2.11)

which is the conjugated Airy kernel (up to the sign and parameter shift). Therefore, we obtain

P (A(α) ≤ β) = det(I +K) = det(I + L2L1) = FGUE(β + α2), (2.12)

which recovers (1.5).

2.2 Multipoint distribution formula of the KPZ fixed point

In this subsection, we will introduce the multipoint distribution formula of the KPZ fixed point as discussed
in Theorem 1.1.

Assume that (αi, τi), 1 ≤ i ≤ m, are m points in R× R+ satisfying (α1, τ1) ≺ · · · ≺ (αm, τm). Then, the
joint distribution of HKPZ(αi, τi), 1 ≤ i ≤ m, is given by

P

(
m⋂
i=1

{
HKPZ(αi, τi) ≤ βi

})
=

∮
0

· · ·
∮
0

D(α1,τ1),...,(αm,τm)(z;β1, . . . , βm)

m−1∏
i=1

dzi
2πizi(1− zi)

, (2.13)

where z = (z1, . . . , zm−1), and D(α1,τ1),...,(αm,τm)(z;β1, . . . , βm) is a function explicitly defined in [Liu22a].
Below in this subsection we suppress the parameters and write D = D(α1,τ1),...,(αm,τm)(z;β1, . . . , βm) for
notation simplification when there is no confusion.

There are two equivalent formulas of D in [Liu22a], one in the form of a Fredholm determinant of an
operator, and the other in the form of a series expansion (of the Fredholm determinant). We will introduce
the expansion formula, since we will not use the operator form of D in this paper.

We first define the functions

fi(w) = e−
1
3 τiw

3+αiw
2+βiw, 1 ≤ i ≤ m, (2.14)
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Re

Im

Γin
3,L

Γin
2,L Γ1,L Γout

2,L

Γout
3,L Γin

3,R
Γ1,RΓout

2,R Γin
2,RΓout

3,R

Figure 2: Illustration of the Γ-contours when m = 3. The two contours Γ1,L and Γ1,R are thickened.

and

Fi(w) =

{
f1(w), i = 1,

fi(w)/fi−1(w), 2 ≤ i ≤ m,

=

{
e−

1
3 τ1w

3+α1w
2+β1w, i = 1,

e−
1
3 (τi−τi−1)w

3+(αi−αi−1)w
2+(βi−βi−1)w, 2 ≤ i ≤ m.

(2.15)

These notations are consistent with (2.1) and (2.2) when τ1 = · · · = τm = 1.
We also introduce the notation of Cauchy determinant

C(W ; W̃ ) := det

[
1

wi − w̃j

]n
i,j=1

= (−1)n(n−1)/2

∏
1≤i<j≤n(wj − wi)(w̃j − w̃i)∏n

i=1

∏n
j=1(wj − w̃i)

(2.16)

for any n ≥ 1, and any vectors W = (w1, . . . , wn), W̃ = (w̃1, . . . , w̃n) ∈ Cn. Note that in the definition, the
dimensions of W and W̃ have to be the same.

Another related notation we need is the following operation ⊔ of two vectors. If W = (w1, . . . , wn) ∈ Cn

and W ′ = (w′
1, . . . , w

′
n′) ∈ Cn′

are two vectors, define their conjunction to be

W ⊔W ′ = (w1, . . . , wn, w
′
1, . . . , w

′
n′) ∈ Cn+n′

. (2.17)

Finally, we introduce 4m − 2 contours as follows. Let Γin
m,L, . . . ,Γ

in
2,L,Γ1,L,Γ

out
2,L, . . . ,Γ

out
m,L, ordered from

left to right, be 2m− 1 contours on the left half of the complex plane. Each of them goes from ∞e−2πi/3 to
∞e2πi/3. Moreover, let Γin

m,R, . . . ,Γ
in
2,R,Γ1,R,Γ

out
2,R, . . . ,Γ

out
m,R, ordered from right to left, be 2m − 1 contours

on the right half of the complex plane. Each of them goes from ∞e−πi/5 to ∞eπi/5. Note that the angles of
these right contours are ±π/5 instead of ±π/3 2. See Figure 2 for an illustration of the contours.

Now we are ready to define the integrand D.

Definition 2.2. The function D = D(α1,τ1),...,(αm,τm)(z;β1, . . . , βm) is defined by the following series expan-
sion

D =
∑

n1,...,nm≥0

1

(n1! · · ·nm!)2
Dn, (2.18)

2When the time parameters are strictly ordered τ1 < · · · < τm, we could choose the angles of the right contours to be ±π/3.
When the time parameters are not necessarily strictly different, we need to bend the right contours to ensure the convergence
of the integrals in the formula. See [Liu22a, discussions after Definition 2.25], or more recently [LZ25, Proposition 3.1].
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where n = (n1, · · · , nm), and

Dn = Dn;(α1,τ1),...,(αm,τm)(z;β1, . . . , βm)

:=

m−1∏
i=1

(1− zi)
ni(1− z−1

i )ni+1

·
m∏
i=2

ni∏
ℓi=1

(
1

1− zi−1

∫
Γin
i,L

du
(i)
ℓi

2πi
− zi−1

1− zi−1

∫
Γout
i,L

du
(i)
ℓi

2πi

)
n1∏

ℓ1=1

∫
Γ1,L

du
(1)
ℓ1

2πi

·
m∏
i=2

ni∏
ℓi=1

(
1

1− zi−1

∫
Γin
i,R

dv
(i)
ℓi

2πi
− zi−1

1− zi−1

∫
Γout
i,R

dv
(i)
ℓi

2πi

)
n1∏

ℓ1=1

∫
Γ1,R

dv
(1)
ℓ1

2πi

C(V (1);U (1)) ·
m∏
i=1

C(U (i) ⊔ V (i+1);V (i) ⊔ U (i+1)) ·
m∏
i=1

ni∏
ℓi=1

Fi(u
(i)
ℓi
)

Fi(v
(i)
ℓi
)
,

(2.19)

where the vectors U (i) = (u
(i)
1 , · · · , u(i)

ni ), V
(i) = (v

(i)
1 , · · · , v(i)ni ) for 1 ≤ i ≤ m, and U (m+1), V (m+1) are both

empty vectors.

It is direct to check that Fi(u) (and 1/Fi(v), respectively) decays super-exponentially fast as u ∈ Γin
i,L∪Γout

i,L

(v ∈ Γin
i,R∪Γout

i,R , respectively) goes to infinity when i ≥ 2, or u ∈ Γ1,L (v ∈ Γ1,R, respectively) goes to infinity
when i = 1. One can show that the integrals in Dn are absolutely convergent, and the summation in (2.18)
is absolutely convergent uniformly for (z1, . . . , zm−1) as long as all the norms |zi|, 1 ≤ i ≤ m, stay within
a compact set of (0, 1). Similar expansions have been discussed in [Liu22a, Liu22b, LW24, LZ25]. We refer
the readers to the discussions after Definition 2.2 in [LZ25] for more details of a similar convergence.

2.3 Proof of Proposition 2.1 using Theorem 1.1

In this subsection, we consider a special case of the formula (2.13) when τ1 = · · · = τm = 1 and α1 < · · · < αm.
After simplifying and rewriting the formula, we will show Proposition 2.1.

Recall the discussions at the end of the previous subsection. We can change the order of the integration
and the summation. Consider the z-integrals inside the summation (2.18) and denote

D̂n = D̂n;α1,...,αm
(β1, . . . , βm) :=

∮
0

· · ·
∮
0

Dn;(α1,1),...,(αm,1)(z;β1, . . . , βm)

m−1∏
i=1

dzi
2πizi(1− zi)

. (2.20)

Then we have

P

(
m⋂
i=1

{A(αi) ≤ βi}

)
=

∑
n1,...,nm≥0

1

(n1! · · ·nm!)2
D̂n. (2.21)

Below in this subsection, we will first evaluate the z-integrals by simplifying the v-integrals in D̂n. This
gives Lemma 2.3. We further re-organize the u-integrals in the formula and give a more compact formula for
D̂n in Lemma 2.4. Finally, we will show the summation in (2.21) is the same as det(I +K) in Proposition
2.1.

For notation convenience, we set

Γin
1,L = Γ1,L, Γout

1,R = Γ1,R (2.22)

throughout this subsection.

Lemma 2.3. Recall that α1 < · · · < αm.
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(i) We have

D̂n =

m∏
i=1

ni∏
ℓi=1

(∫
Γin
i,L

du
(i)
ℓi

2πi

∫
Γout
i,R

dv
(i)
ℓi

2πi

)

C(V (1);U (1)) ·
m∏
i=1

C(U (i) ⊔ V (i+1);V (i) ⊔ U (i+1)) ·
m∏
i=1

ni∏
ℓi=1

Fi(u
(i)
ℓi
)

Fi(v
(i)
ℓi
)
,

(2.23)

where all the notations are the same as in the previous subsection.

(ii) If n1 ≥ · · · ≥ nm, we have

D̂n =

m−1∏
i=1

ni!

ki!

m∏
i=1

ni∏
ℓi=1

∫
Γin
i,L

du
(i)
ℓi

2πi
·

m∏
i=1

ki∏
ℓ̂i=1

∫
Γ1,R

dv̂
(i)
ℓi

2πi

C(V̂ (m) ⊔ · · · ⊔ V̂ (1);U (1)) ·
m∏
i=1

C(U (i);U (i+1) ⊔ V̂ (i)) ·
m∏
i=1

∏ni

ℓi=1 Fi(u
(i)
ℓi
)∏ki

ℓ̂i=1
fi(v̂

(i)

ℓ̂i
)
,

(2.24)

where ki = ni − ni+1 for 1 ≤ i ≤ m, with the convention that nm+1 = 0, and V̂ (i) = (v̂
(i)
1 , . . . , v̂

(i)
ki
) for

1 ≤ i ≤ m, and the functions fi are defined in (2.1). Moreover, for all other n we have D̂n = 0.

Proof of Lemma 2.3. The proof of part (i) is basically the same as that of Lemma 6.1 in [LZ25]. We look at
the expansion of the v-integrals in (2.19) by only taking one contour for each variable in one term. We give
an example to illustrate such an expansion: (c1

∫
I1
dx + c2

∫
I2
dx)(c′1

∫
I′
1
dx′ + c′2

∫
I′
2
dx′) can be expanded

to the sum of the following 4 terms cic
′
i′

∫
Ii
dx
∫
I′
i′
dx′, 1 ≤ i, i′ ≤ 2. After the expansion, we have a sum

of terms each of which is a multiple contour integral with each v-variable running over one single contour.

Consider a term where each v-contour is a single contour. If any of the v
(i)
ℓi

contour is Γin
i,R, assume i ≥ 2

is the largest index with this property. With this assumption, we can deform the v
(i)
ℓi

contour from Γin
i,R to

R + Γin
i,R for any R > 0 without encountering any pole since the only possible poles are u

(j)
ℓj

’s on the left

half plane, v
(i−1)
ℓi−1

∈ Γin
i−1,R ∪ Γout

i−1,R, and v
(i+1)
ℓi+1

∈ Γout
i+1,R which are all on the left side of Γin

i,R, see Figure 2.

Now we let R → +∞ and the v
(i)
ℓi

integral decays to zero since 1/Fi(v
(i)
ℓi
) decays super-exponentially fast as

R grows for any i ≥ 2, see the definition of Fi functions in (2.2). Thus, the integral vanishes if any Γin
i,R is

included in the term from the expansion of (2.19). Now we drop all these vanishing terms and have only
one surviving term

Dn =

m−1∏
i=1

(1− zi)
ni

m∏
i=2

ni∏
ℓi=1

(
1

1− zi−1

∫
Γin
i,L

du
(i)
ℓi

2πi
− zi−1

1− zi−1

∫
Γout
i,L

du
(i)
ℓi

2πi

)∫
Γout
i,R

dv
(i)
iℓ

2πi
· · · , (2.25)

where we suppressed the integrand, which is irrelevant to the z-variables. The function above is analytic
in zi at the origin for each i. Hence, evaluating the z-integrals

∮
0
· · ·
∮
0
Dn

∏m−1
i=1

dzi
2πizi(1−zi)

is the same as

inserting zi = 0 in the expression above. This proves (2.23).
Now we prove the second part of the lemma. It requires evaluations of some v-integrals recurrently, which

we explain below.

We start with the formula (2.23) and evaluate the integrals of v
(m)
ℓm

along the contour Γout
m,R. If we deform

one v
(m)
ℓm

contour to Γin
m,R, then the v

(m)
ℓm

-integral along the new contour Γin
m,R vanishes, as we discussed in

the proof of part (i). This implies that each integral of v
(m)
ℓm

along the contour Γout
m,R only leaves the residue

of the integrand when v
(m)
ℓm

encounters one of the poles v
(m−1)
ℓm−1

, 1 ≤ ℓm−1 ≤ nm−1. Moreover, due to the

Cauchy determinant structure, the factor C(U (m);V (m)) vanished when we evaluate two v
(m−1)
ℓm

variables
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at the same pole (e.g., when both v
(m)
1 and v

(m)
2 equals to v

(m−1)
1 ). This implies that the integrals of

v
(m)
1 , . . . , v

(m)
nm give zero (hence D̂n = 0) unless nm ≤ nm−1 and v

(m)
1 , . . . , v

(m)
nm are evaluated at different

poles among v
(m−1)
1 , . . . , v

(m−1)
nm−1 . Also note that the integrand is symmetric on the poles v

(m−1)
1 , . . . , v

(m−1)
nm−1 .

Therefore, there are nm−1 · (nm−1 − 1) · · · (nm−1 − nm + 1) = nm−1!/km−1! ways to evaluate the residues

and each way gives the same result. Without loss of generality, we evaluate the pole of v
(m)
ℓm

at v
(m−1)
ℓm

for
each ℓm = 1, . . . , nm. This evaluation gives

D̂n =
nm−1!

km−1!

m−1∏
i=1

ni∏
ℓi=1

(∫
Γin
i,L

du
(i)
ℓi

2πi

∫
Γout
i,R

dv
(i)
ℓi

2πi

)
nm∏

ℓm=1

∫
Γin
m,L

du
(m)
ℓm

2πi

C(V (1);U (1)) ·
m−2∏
i=1

C(U (i) ⊔ V (i+1);V (i) ⊔ U (i+1)) · C
(
U (m−1);U (m) ⊔ V

(m−1)
[nm+1,nm−1]

)
· C
(
U (m);V

(m−1)
[1,nm]

)
·

∏m
i=1

∏ni

ℓi=1 Fi(u
(i)
ℓi
)∏m−1

i=1

∏ni

ℓi=1 Fi(v
(i)
ℓi
) ·
∏nm

ℓm=1 Fm(v
(m−1)
ℓm

)
,

(2.26)

where we used the following notation

V
(i)
[a,b] := (v(i)a , v

(i)
a+1, . . . , v

(i)
b ), 1 ≤ a ≤ b ≤ ni, 1 ≤ i ≤ m. (2.27)

We continue the same argument for the v
(m−1)
ℓm−1

integrals. Similarly, we get D̂n = 0 if nm−1 > nm−2.
Moreover, when nm−1 ≤ nm−2, the residue evaluation gives

D̂n =
nm−1!nm−2!

km−1!km−2!

m−2∏
i=1

ni∏
ℓi=1

(∫
Γin
i,L

du
(i)
ℓi

2πi

∫
Γout
i,R

dv
(i)
ℓi

2πi

)
m∏

j=m−1

nj∏
ℓj=1

∫
Γin
j,L

du
(j)
ℓj

2πi

C(V (1);U (1)) ·
m−3∏
i=1

C(U (i) ⊔ V (i+1);V (i) ⊔ U (i+1)) ·
m−1∏

j=m−2

C
(
U (j);U (j+1) ⊔ V

(m−2)
[nj+1+1,nj ]

)

· C
(
U (m);V

(m−2)
[1,nm]

)
·

∏m
i=1

∏ni

ℓi=1 Fi(u
(i)
ℓi
)∏m−2

i=1

∏ni

ℓi=1 Fi(v
(i)
ℓi
) ·
∏m

j=m−1

∏nj

ℓj=1 Fj(v
(m−2)
ℓj

)
.

(2.28)

Repeating this procedure until only v
(1)
ℓ1

integrals are left, we obtain D̂n = 0 if any ni > ni−1 holds,
2 ≤ i ≤ m. Moreover, if n1 ≥ · · · ≥ nm, we end with

D̂n =

m−1∏
i=1

ni!

ki!

m∏
j=2

nj∏
ℓj=1

∫
Γin
j,L

du
(j)
ℓj

2πi

n1∏
ℓ1=1

(∫
Γ1,L

du
(1)
ℓ1

2πi

∫
Γ1,R

dv
(1)
ℓ1

2πi

)

C(V (1);U (1)) ·
m−1∏
j=1

C
(
U (j);U (j+1) ⊔ V

(1)
[nj+1+1,nj ]

)
· C
(
U (m);V

(1)
[1,nm]

)
·
∏m

i=1

∏ni

ℓi=1 Fi(u
(i)
ℓi
)∏m

j=1

∏nj

ℓj=1 Fj(v
(1)
ℓj

)
.

(2.29)

Note that, by recalling (2.1) and (2.2),

m∏
j=1

nj∏
ℓj=1

Fj(v
(1)
ℓj

) =

m∏
j=1

nj∏
ℓj=nj+1+1

fj(v
(1)
ℓj

). (2.30)

By relabeling the v(1)-variables in (2.29), we obtain (2.24).

The next step is to further simplify (2.24) by re-organizing the u-integrals. We will assume that n1 ≥
· · · ≥ nm, since otherwise D̂n = 0 as shown in Lemma 2.3.
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Lemma 2.4. Assume ki = ni − ni+1 ≥ 0 for each i = 1, . . . ,m, where we set nm+1 = 0 for notation
convenience. Then we have

D̂n =

(
m−1∏
i=1

ni!

ki!

)2 m∏
i=1

ki∏
ℓ̂i=1

∫
Γ1,L

dû
(i)

ℓ̂i

2πi

∫
Γ1,R

dv̂
(i)

ℓ̂i

2πi
C(V̂ ; Û) ·

m∏
i=1

det
[
hi(û

(i)
a , v̂

(i)
b )
]ki

a,b=1
·

m∏
i=1

ki∏
ℓ̂i=1

1

fi(v̂
(i)

ℓ̂i
)

(2.31)

where
V̂ = V̂ (m) ⊔ · · · ⊔ V̂ (1), Û = Û (m) ⊔ · · · ⊔ Û (1) (2.32)

with
Û (i) = (û

(i)
1 , . . . , û

(i)
ki
), V̂ (i) = (v̂

(i)
1 , . . . , v̂

(i)
ki
), 1 ≤ i ≤ m, (2.33)

and the functions hi(u, v) are defined for all (u, v) ∈ Γ1,L × Γ1,R as follows

hi(u, v) =


F1(u)

u− v
, i = 1,

i∏
j=2

∫
Γin
j,L

duj

2πi

∏i
j=2 Fj(uj) · F1(u)

(u− u2) ·
∏i−1

j=2(uj − uj+1) · (ui − v)
, 2 ≤ i ≤ m.

(2.34)

We will use the following simple lemma repeatedly in the proof of Lemma 2.4.

Lemma 2.5. Let Σ be a contour. F is a function on Σn which is antisymmetric, i.e., F (w1, . . . , wn) =
sgn(σ)F (wσ1

, . . . , wσn
) for any permutation σ of {1, . . . , n}. Assume that the integrals in this lemma are all

well-defined.

(i) Let pi, 1 ≤ i ≤ n, be functions. Then∫
Σn

F (w1, . . . , wn) det [pi(wj)]
n
i,j=1

n∏
i=1

dwi = n!

∫
Σn

F (w1, . . . , wn)

n∏
i=1

pi(wi)dwi. (2.35)

(ii) Assume k ≤ n. Let w′
j, 1 ≤ j ≤ k, be complex numbers on a contour Σ′, and q be a function on Σ×Σ′.

Then ∫
Σn

F (w1, . . . , wn)

k∏
j=1

q(wj , w
′
j)

n∏
i=1

dwi (2.36)

is antisymmetric in w′
1, . . . , w

′
k.

Proof of Lemma 2.5. For (i), one just needs to expand the determinant and use the antisymmetry of F . Now
consider the second part. For any permutation of σ : {1, . . . , k} → {1, . . . , k}, we extend it to a permutation
on {1, . . . , n} by defining σ(i) = i if i > k. Then∫

Σn

F (w1, . . . , wn)

k∏
j=1

q(wj , w
′
σj
)

n∏
i=1

dwi =

∫
Σn

F (wσ1
, . . . , wσn

)

k∏
j=1

q(wσj
, w′

σj
)

n∏
i=1

dwi

=

∫
Σn

F (wσ1 , . . . , wσn)

k∏
j=1

q(wj , w
′
j)

n∏
i=1

dwi

= sgn(σ)

∫
Σn

F (w1, . . . , wn)

k∏
j=1

q(wj , w
′
j)

n∏
i=1

dwi,

(2.37)

where we relabeled the w-variables in the first step, and applied the antisymmetry of F in the last step.
This proves the second part of the lemma.
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Now we are ready to prove Lemma 2.4.

Proof of Lemma 2.4. The first part of Lemma 2.5 implies that we could replace a determinant det [pi(wj)]
n
i,j=1

by a single term n!
∏n

i=1 pi(wi) in a n-fold integral with respect to w1, . . . , wn as long as the remaining part
of the integrand is antisymmetric in these variables. We apply this lemma to the Cauchy determinant
C(U (1);U (2) ⊔ V̂ (1)) in (2.24) and use the fact that the remaining part of the integrand is antisymmetric

in the variables u
(1)
1 , . . . , u

(1)
n1 due to the first Cauchy determinant C(V̂ (m) ⊔ · · · ⊔ V̂ (1);U (1)) = C(V̂ ;U (1)).

Thus, we could replace C(U (1);U (2) ⊔ V̂ (1)) by

n1!

n2∏
ℓ2=1

1

u
(1)
ℓ2

− u
(2)
ℓ2

·
k1∏

ℓ̂1=1

1

û
(1)

ℓ̂1
− v̂

(1)

ℓ̂1

(2.38)

where
û
(1)

ℓ̂1
= u

(1)

n2+ℓ̂1
, ℓ̂1 = 1, . . . , k1 = n1 − n2. (2.39)

On the other hand, we also note that the remaining part in the integrand is also antisymmetric in v̂
(1)
1 , . . . , v̂

(1)
k1

due to the Cauchy determinant C(V̂ (m)⊔· · ·⊔ V̂ (1);U (1)). Thus, we apply the first part of Lemma 2.5 again,

and can replace
∏k1

ℓ̂1=1
1

û
(1)

ℓ̂1
−v̂

(1)

ℓ̂1

in (2.38) by the Cauchy determinant (k1!)
−1C(Û (1); V̂ (1)), where

Û (1) := (û
(1)
1 , . . . , û

(1)
k1

) = (u
(1)
n2+1, . . . , u

(1)
n1

). (2.40)

Now we have the following expression for D̂n

D̂n =

m−1∏
i=1

ni!

ki!
·

m∏
i=1

ni∏
ℓi=1

∫
Γin
i,L

du
(i)
ℓi

2πi
·

m∏
i=1

ki∏
ℓ̂i=1

∫
Γ1,R

dv̂
(i)
ℓi

2πi

· n1!

k1!
· C(V̂ ;U (1)) · C(Û (1); V̂ (1)) ·

m∏
i=2

C(U (i);U (i+1) ⊔ V̂ (i)) ·
n2∏

ℓ2=1

1

u
(1)
ℓ2

− u
(2)
ℓ2

·
m∏
i=1

∏ni

ℓi=1 Fi(u
(i)
ℓi
)∏ki

ℓ̂i=1
fi(v̂

(i)

ℓ̂i
)
.

(2.41)

Note that comparing to (2.24), the formula above simply did the following replacement in the integrand

C(U (1);U (2) ⊔ V̂ (1)) → n1!

k1!
C(Û (1); V̂ (1)) ·

n2∏
ℓ2=1

1

u
(1)
ℓ2

− u
(2)
ℓ2

. (2.42)

Now we consider the factor C(U (2);U (3)⊔ V̂ (2)) in (2.41). Note that the remaining part is still antisymmetric

in u
(2)
1 , . . . , u

(2)
n2 by part (ii) of Lemma 2.5. Similarly to the previous factor, we have the following replacement

in the integrand

C(U (2);U (3) ⊔ V̂ (2)) → n2!

k2!
C(Û (2); V̂ (2)) ·

n3∏
ℓ3=1

1

u
(2)
ℓ3

− u
(3)
ℓ3

, (2.43)

where
Û (2) := (û

(2)
1 , . . . , û

(2)
k2

) = (u
(2)
n3+1, . . . , u

(2)
n2

). (2.44)

We repeat this procedure and finally arrive at

D̂n =

(
m−1∏
i=1

ni!

ki!

)2

·
m∏
i=1

ni∏
ℓi=1

∫
Γin
i,L

du
(i)
ℓi

2πi
·

m∏
i=1

ki∏
ℓ̂i=1

∫
Γ1,R

dv̂
(i)
ℓi

2πi

C(V̂ ;U (1)) ·
m∏
i=1

C(Û (i); V̂ (i)) ·
m∏
i=2

ni∏
ℓi=1

1

u
(i−1)
ℓi

− u
(i)
ℓi

·
m∏
i=1

∏ni

ℓi=1 Fi(u
(i)
ℓi
)∏ki

ℓ̂i=1
fi(v̂

(i)

ℓ̂i
)
,

(2.45)
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where
Û (i) := (û

(i)
1 , . . . , û

(i)
ki
) = (u

(i)
ni+1+1, . . . , u

(i)
ni
), 1 ≤ i ≤ m. (2.46)

Now we absorb all the u-factors in the integrand of (2.45) into the Cauchy determinants. Note that all

the variables û
(i)

ℓ̂i
= u

(i)

ni+1+ℓ̂i
for 1 ≤ i ≤ m and 1 ≤ ℓ̂i ≤ ki are distinct. Moreover, for each 1 ≤ ℓ ≤ n1, there

exists a unique pair (i, ℓ̂i) such that 1 ≤ i ≤ m, 1 ≤ ℓ̂i ≤ ki, and ℓ = ni+1 + ℓ̂i. We group all the factors

involving u
(j)
ℓ together for each fixed ℓ, which give

i−1∏
j=1

Fj(u
(j)
ℓ )

u
(j)
ℓ − u

(j+1)
ℓ

· Fi(u
(i)
ℓ ). (2.47)

Then we absorb this term to the ℓ̂i-th row of the Cauchy determinant C(Û (i); V̂ (i)). Note that every u-factor

is uniquely absorbed into one row in one Cauchy determinant. Thus, we can evaluate each u
(i)
ℓ integral

inside the corresponding Cauchy determinant if i > 1. The restriction of i > 1 is because u
(1)
ℓ also appears

in the first Cauchy determinant C(V̂ (1);U (1)). Now the Cauchy determinant C(Û (i); V̂ (i)) becomes a new

determinant whose entry at the ℓ̂i-th row and ℓ̂′i-th column, 1 ≤ ℓ̂i, ℓ̂
′
i ≤ ki, is given by∫

Γin
2,L

du
(2)
ℓ

2πi
· · ·
∫
Γin
i,L

u
(i)
ℓ

2πi

i−1∏
j=1

Fj(u
(j)
ℓ )

u
(j)
ℓ − u

(j+1)
ℓ

·
Fi(u

(i)
ℓ )

û
(i)

ℓ̂i
− v̂

(i)

ℓ̂′i

= hi

(
u
(1)
ni+1+ℓi

, v̂
(i)

ℓ̂′i

)
, (2.48)

where ℓ = ni+1 + ℓ̂i. Note that u
(i)
ℓ = û

(i)

ℓ̂i
. The identity (2.31) follows after relabeling the variables in

U (1).

At the end of this subsection, we prove Proposition 2.1.

Proof of Proposition 2.1. We apply Lemma 1.2 for (2.31) and get, when ki = ni − ni+1 ≥ 0, 1 ≤ i ≤ m,

D̂n =

m∏
i=1

(ni!)
2

ki!

m∏
i=1

ki∏
ℓ̂i=1

∫
Γ1,L

dû
(i)

ℓ̂i

2πi
det

∫
Γ1,R

hi

(
û
(i)

ℓ̂i
, v
) 1

fi(v)
· 1

v − û
(j)

ℓ̂j

dv

2πi


(i,ℓ̂i),(j,ℓ̂j)

, (2.49)

where the row/column indices are chosen from {(i, ℓ̂i) : 1 ≤ i ≤ m, 1 ≤ ℓ̂i ≤ ki}. It is direct to check

the entry in the determinant equals to K
(
i, û

(i)

ℓ̂i
; j, û

(j)

ℓ̂j

)
, see the definitions of K in (2.3) and hi in (2.34).

Inserting the above formula in (2.21), we obtain

P

(
m⋂
i=1

{A(αi) ≤ βi}

)
=

∑
k1,...,km≥0

1

k1! · · · km!

ki∏
ℓ̂i=1

∫
Γ1,L

dû
(i)

ℓ̂i

2πi
det
[
K
(
i, û

(i)

ℓ̂i
; j, û

(j)

ℓ̂j

)]
(i,ℓ̂i),(j,ℓ̂j)

. (2.50)

This is the same as the Fredholm determinant expansion (2.6). This completes the proof.

3 Equivalence of two Fredholm determinants

In this section, we further rewrite the Fredholm determinant formula in Proposition 2.1 and show the
equivalence between this formula and (1.1).
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We first conjugate the kernel K and rewrite the Fredholm determinant det(I + K) to a new Fredholm
determinant of an operator defined on L2(R+). Recall the definition of the kernel K in (2.3). It can be
rewritten as

K(i, z; j, u) =

∫ ∞

0

L1(i, z;λ)L2(λ; j, u)dλ, (3.1)

where

L1(i, z;λ) =



∫
dv

2πi

f1(z)

f1(v)eλv
· 1

z − v
, i = 1,∫

dv

2πi

i∏
ℓ=2

∫
duℓ

2πi

f1(z)

fi(v)eλv
·

∏i
ℓ=2 Fℓ(uℓ)

(z − u2) ·
∏i−1

ℓ=2(uℓ − uℓ+1) · (ui − v)
, 2 ≤ i ≤ m,

(3.2)

and
L2(λ; j, u) = eλu. (3.3)

The integration contours in (3.2) are the same as in the definition of K in (2.3), but here we will make a
specific choice of the contour for notation convenience when we do the contour deformations later. We take
the u contour to be the same as Γ1,L, and the uℓ, 2 ≤ ℓ ≤ m, contours to be Γin

ℓ,L. We also set the v-contour

to be Γ1,R. We will also use the contours Γout
ℓ,L , 2 ≤ ℓ ≤ m. All these contours are defined the same way as

in Section 2.2. See Figure 2 for an illustration.
One can also view L1 and L2 as operators, and denote L = L2L1 the product operator with the following

kernel, after using the above notations of the contours,

L(λ, θ) =

m∑
i=1

∫
Γ1,L

du1

2πi
L2(λ; i, u1)L1(i, u1; θ)

=

m∑
i=1

∫
Γ1,L

du1

2πi

∫
Γ1,R

dv

2πi

i∏
ℓ=2

∫
Γin
ℓ,L

duℓ

2πi
· f1(u1)e

λu1

fi(v)eθv

∏i
ℓ=2 Fℓ(uℓ)∏i−1

ℓ=1(uℓ − uℓ+1) · (ui − v)
.

(3.4)

Recall that det(I +K) is well-defined by its series expansion which is absolutely convergent. Also note that
if any of the two Fredholm determinants det(I + AB) and det(I + BA) has an absolutely convergent series
expansion, then the identity det(I + AB) = det(I + BA) holds and both have absolutely convergent series
expansions. Therefore det(I +K) = det(I + L), where

det(I + L) =

∞∑
k=0

1

k!

∫ ∞

0

· · ·
∫ ∞

0

det [L(λi, λj)]
k
i,j=1

n∏
i=1

dλi. (3.5)

Moreover, the summation is absolutely convergent.

It turns out that the kernel L can be further simplified.

Lemma 3.1. We have

L(λ, θ)

=

m∑
k=1

(−1)k
∑

1≤i1<···<ik≤m

∫ ∞

0

· · ·
∫ ∞

0

A1(λ; i1, γ1) ·
k−1∏
ℓ=1

B(iℓ, γℓ; iℓ+1, γℓ+1) ·A2(ik, γk; θ)

k∏
ℓ=1

dγℓ,
(3.6)

where

A1(λ; i, γ) =

∫
Γ1,L

fi(u)e
(λ+γ)u du

2πi
, A2(i, γ; θ) =

∫
Γ1,R

1

fi(v)e(θ+γ)v

dv

2πi
, 1 ≤ i ≤ m, (3.7)

and

B(i, γ; i′, γ′) =

∫
iR
e(γ

′−γ)w ·
i′∏

ℓ=i+1

Fℓ(w)
dw

2πi
, 1 ≤ i < i′ ≤ m. (3.8)

14



Re

Im

Γout
i1,L

Γout
i2,L

Γout
ik,L

Γ1,R

ui2 uik

Figure 3: Deformation of the contours: Initially, for each 2 ≤ i ≤ k, the contour of uiℓ is the dashed contour
Γout
ik,L

; It is deformed to a solid vertical line. After the deformation, Re(ui1) < Re(ui2) < · · · < Re(uik) <

Re(v) when ui1 ∈ Γout
i1,L

, v ∈ Γ1,R, and uiℓ from the deform contour, 2 ≤ ℓ ≤ k.

Proof of Lemma 3.1. Recall the definition of L(λ, θ) in (3.4). We deform the contours Γin
ℓ,L to Γout

ℓ,L , ℓ =
2, . . . , i, subsequently. Note that the uℓ-integral will result in two terms: one term gives the residue of the
integrand when uℓ = uℓ−1, and the other term gives the integral along the new contour Γout

ℓ,L . By sorting the
terms, we get

m∑
i=1

∫
Γ1,L

du1

2πi

∫
Γ1,R

dv

2πi

i∏
ℓ=2

∫
Γin
ℓ,L

duℓ

2πi
· f1(u1)e

λu1

fi(v)eθv

∏i
ℓ=2 Fℓ(uℓ)∏i−1

ℓ=1(uℓ − uℓ+1) · (ui − v)

=

m∑
i=1

i∑
k=1

∑
1≤i1<···<ik=i

∫
Γout
i1,L

dui1

2πi
· · ·
∫
Γout
ik,L

duik

2πi

∫
Γ1,R

dv

2πi

fi1(ui1)e
λui1

fi(v)eθv

∏k
ℓ=2

∏iℓ
j=iℓ−1+1 Fj(uiℓ)∏k−1

ℓ=1 (uiℓ − uiℓ+1
) · (uik − v)

=

m∑
k=1

∑
1≤i1<···<ik≤m

∫
Γout
i1,L

dui1

2πi
· · ·
∫
Γout
ik,L

duik

2πi

∫
Γ1,R

dv

2πi

fi1(ui1)e
λui1

fik(v)e
θv

∏k
ℓ=2

∏iℓ
j=iℓ−1+1 Fj(uiℓ)∏k−1

ℓ=1 (uiℓ − uiℓ+1
) · (uik − v)

,

(3.9)

where we set Γout
1,L = Γ1,L for notation convenience. Recall the definition of the functions Fi in (2.2).

The functions
∏i′

j=i+1 Fj(w) = e(αi′−αi)w
2+(βi′−βi) decay super-exponentially fast when w → ∞ along any

vertical line since αi′ − αi > 0. Thus, we could deform the Γout
iℓ,L

, 2 ≤ ℓ ≤ k, to vertical lines as long as

these contours are of the same order, and lie between the two contours Γout
i1,L

and Γ1,R. See Figure 3 for an
illustration.

With the new contours, Re(uiℓ − uiℓ+1
) < 0 for all 1 ≤ ℓ ≤ k − 1, and Re(uik − v) < 0. Hence we write

1

uiℓ − uiℓ+1

= −
∫ ∞

0

eγℓ(uiℓ
−uiℓ+1

)dγℓ,
1

uik − v
= −

∫ ∞

0

eγk(uik
−v)dγk. (3.10)

The lemma follows immediately.

With Lemma 3.1, we are able to express L as the product of three operators. We extend the definition
of B to

B(i, γ; i′, γ′) =


∫
iR
e(γ

′−γ)w ·
i′∏

ℓ=i+1

Fℓ(w)
dw

2πi
, 1 ≤ i < i′ ≤ m, and γ, γ′ > 0,

0, elsewhere.

(3.11)
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Then

L = −A1

(
m−1∑
k=0

(−1)kBk

)
A2. (3.12)

Similarly to the arguments before (3.5), we can write

det(I + L) = det

(
I−

(
m−1∑
k=0

(−1)kBk

)
A

)
, (3.13)

where A = A2A1 with kernel given by

A(i, λ; j, θ) =

∫ ∞

0

∫
Γ1,L

du

2πi

∫
Γ1,R

dv

2πi

fj(u)e
(θ+γ)u

fi(v)e(λ+γ)v
dγ. (3.14)

Now we use the fact that B is strictly upper-triangle (with zero diagonal entries), hence multiplying the
operator I +B inside the Fredholm determinant will not affect its value. This implies

det(I + L) = det

(
(I +B)

(
I−

(
m−1∑
k=0

(−1)kBk

)
A

))
= det(I +B −A), (3.15)

where we used the fact that Bm = 0 by its definition.

The last piece of the proof we need is the following lemma.

Lemma 3.2. We have the following identities.

(i) For all 1 ≤ i, j ≤ m, and λ, θ > 0,

A(i, λ; j, θ)

= e−
2
3α

3
i−(λ+βi)αi+

2
3α

3
j+(θ+βj)αj

∫ ∞

0

e−(αi−αj)γAi
(
λ+ βi + α2

i + γ
)
Ai
(
θ + βj + α2

j + γ
)
dγ.

(3.16)

(ii) For all 1 ≤ i < j ≤ m,

B(i, λ; j, θ)

=
1

2
√
π(αj − αi)

e
− 1

4(αj−αi)
(βj+θ−βi−λ)2

= e−
2
3α

3
i−(λ+βi)αi+

2
3α

3
j+(θ+βj)αj

∫ ∞

−∞
e−(αi−αj)γAi

(
λ+ βi + α2

i + γ
)
Ai
(
θ + βj + α2

j + γ
)
dγ.

(3.17)

Proof of Lemma 3.2. Recall the definitions of fi(w) = e−
1
3w

3+αiw
2+βiw in (2.1), and the Airy function in

(1.4). Inserting these in (3.14), we obtain (3.16) by a direct computation.
Similarly, recall the definition of Fℓ function in (2.2). The first equation of (3.17) follows from a direct

computation of (3.11). The second part follows from the following identity (see [Oko02, Lemma 2.6])∫ ∞

−∞
exzAi(z + a)Ai(z + b)dz =

1

2
√
πx

e
x3

12 − a+b
2 x− (a−b)2

4x , x > 0. (3.18)

Now we insert this lemma to (3.15). The Fredholm determinant equals to (1.1) after a conjugation and
a simple notation change.
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