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Abstract

The parabolic Airy process is the Airys process minus a parabola, initially defined by its finite-
dimensional distributions, which are given by a Fredholm determinant formula with the extended Airy
kernel. This process is also the one-time spatial marginal of the KPZ fixed point with the narrow wedge
initial condition. There are two formulas for the space-time multipoint distribution of the KPZ fixed point
with the narrow wedge initial condition obtained by [JR2I] and [Liu22a]. Especially, the equal-time case
of [Liu22a) gives a different formula of the multipoint distribution of the parabolic Airy process. In this
paper, we present a direct proof that this formula matches the one with the extended Airy kernel. Some
byproducts in the proof include several new formulas for the parabolic Airy process, and a generalization
of the Andreief’s identity.

1 Introduction

The parabolic Airy process is defined to be A(a) = Az(a) — o?, a € R, where As(a) is the Airy, process
introduced by Prihofer and Spohn [PS02]. It is conjectured to be a universal limit of the models in the
(141)-dimensional Kardar-Parisi-Zhang universality class with the narrow-wedge initial condition [BD.J99,
Joh00l [Fer08, W09, [ACQ11, BC14, BCGI6, [FS23]. The parabolic Airy process can be defined by its
finite-dimensional distributions

P (ﬁ {A(Oél) < 61}) =P (ﬁ {.AQ(OQ) < 51 + Oé?}) = det (I _ Xl/zKZ)i(tXI/Q)

i=1 =1

(1.1)

L2({ay,....am}xR)’

where ay < --+ < auy, X is the indicator function defined by

L a>fi+af,
x(@i, 2) = 1(g,1a2,00) (7) = {0 elsewhere (12)
and K§%* is the extended Airy kernel defined by
oo
/ e * (@i Aj(z 4+ 2)Ai(y + 2)dz, if a; > ay,
Kt (anaio5,9) =177 o (1.3)
7/ e # @) Ai(x 4 2)Ai(y + 2)dz,  if a; < .
Here Ai(z) denotes the Airy function
: d
Ai(z) = / emsuiten 2 (1.4)
rL 2mi
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where T', is a contour on the complex plane that goes from coe=2/3 to coe?™/3.
When m = 1, denote a; = a and 81 = 8. The one-point distribution of the parabolic Airy process is
given by
P (.A(Oz) < 5) = Faur (ﬂ + a2) , a,B ER, (1.5)

where Fgug is the GUE Tracy-Widom distribution.

The parabolic Airy process can be viewed as a special case of the one-time marginals of the KPZ fixed
point, which is a space time random field constructed by [MQR21]. Similarly to the parabolic Airy process,
the KPZ fixed point is also conjectured and partially proved to be a universal limit of the models in the
Kardar-Parisi-Zhang universality class [MQR21],[DOV22] [QS23| [Vir20, [ACH24l [DZ25]. The KPZ fixed point
depends on the initial condition. Throughout this paper, we will only consider one special initial condition
where the parabolic Airy process arises. Denote HXP%(a, 7), with (o, 7) € R x [0, 00), the KPZ fixed point
with the narrow-wedge initial condition H¥P% (e, 0) = —00 - 1\ (0} (@), i.e., HXP%(a,0) = 0 when a = 0, and
—oo elsewhere.

The KPZ fixed point HXF%(a, 7) has the following well known 1 : 2 : 3 scaling invariance

HKPZ (o, 7) e VBYKPL(2/30, er), (1.6)

where < denotes the equation in distribution. Moreover, its one-time marginals are given by the (rescaled)
parabolic Airy process

’HKPZ(Q,T()) d 7'01/3./4 (7_0*2/3a> (1.7)

for any fixed 79 > 0. Especially, for 79 = 1, we can write

A(a) £ HEPZ(q, 1), (1.8)

On the other hand, the exact formulas of the finite-dimensional distributions of the KPZ fixed point
(with the narrow-wedge initial condition) H¥P%(z,t) for general space time points were also obtained in
[JR21) Liu22a). The formulas in these two papers are different, with both being very complicated. The
formula in [JR21] is valid for points with different time parameters (and hence one still needs to use the
continuity of the KPZ fixed point and take an extra limit to get a formula for the case when the time
parameters are equal), while the formula in [Liu22a] holds for arbitrary space time points, which could include
some equal time parameters. It implies that the equal-time multipoint distribution formula in [Liu22a] also
gives the finite-dimensional distributions of the parabolic Airy process. However, a direct verification was
missing. The motivation of this paper is to give a direct proof that the equal-time formula of [Liu22a] indeed
matches the original multipoint distribution formula of the parabolic Airy process.

Let us introduce the formula of [Liu22a] below. Define an order < in R x R as follows, here Ry denotes
the set of positive real numbers. (o, 7) < (&/,7’) if and only if one of the following two conditions are
satisfied:

(1) T<7',0r
(2) T=7"and a < .

Theorem 1.1 ([Liu22a]). Assume the points (o, ;) € R x Ry are ordered (a1, 71) < -+ < (Qmy Tim). We
have

m—1

(ﬂ{HKPZ 0.7) <@> B f Ptz [T Gy 09

=1

where z = (21, ,Zm-1), and D(a, 71),....(am,rm)(Z: BLs- -+, Bm) 48 a function defined in Definition .
Moreover, the symbol fo denotes the integral along a small circle around the origin, with the counterclockwise
orientation.



As a special case, when 77 = -+ = 7, = 1 and a1 < -+ < Qup, the formula (1.9 is the same as
P(Ni~, {A(a;) < B;}) by the relation (1.8) between the parabolic Airy process and the KPZ fixed point.
Thus, we have the following formula for the parabolic Airy process

m m—1
Zi
P <ZQ {A(a;) < ﬁz}) = fg~..ng(al,l),...,(am,l)(Z§51,..~,Bm) };[1 727rizi(1 ) (1.10)

for ap < --- < .

It turns out that can be simplified to a Fredholm determinant with kernel defined on a contour on
a complex plane, see Proposition We will also show that the simplified Fredholm determinant formula
matches the original formula in the definition of the parabolic Airy process.

The proof relies on dedicated computations of the contour integrals appearing in the D function. While
most of the computations are directly related to the formulas of the parabolic Airy process, we also use the
following lemma in the proof, which is independent of the process and might be of its own interest. Note
that when m = 1, Lemma [1.2]is the well known Andreief’s identity [And86].

Lemma 1.2 (Generalized Andreief’s Identity). Let I,..., I, be a partition of {1,...,n}. Denote by ¢ the
indicator function on UL I x I, i.e.,

(1.11)

o 1, 4,j € Iy for some k,
o(i,j) =
0, elsewhere.

Let X C C be a measurable set and p be a measure on I'. Suppose A;(x) and B;(x), 1 <1i <mn, are two
sequence of functions on X such that A;(z)Bj(x), 1 < 4,j < n, are all integrable functions with respect to
du. Then we have

n 1 . . n
ot | [ A@B@IE)| = e [ ae A de Bite) o)y [T e (112

Equivalently, we have
" 1
det /AixBla:d x} :mi/ det [A;(x det [B;(x dp(z;).  (1.13
J B @] =g ]”1H mngu (1.13)
Proof of Lemma|1.4 The idea of the proof is similar to that of the Andreief’s identity. We denote S* the

set of permutatlons of {1,...,n} that map I to itself for all 1 < k < m, i.e.,, o0 € S* if and only if o is a
bijection of {1,...,n} and ¢(i,0;) =1 for all 4. It is direct to count that

5% =TT 1l (1.14)
k=1

Now we write

det [/X Ai(z)Bj(x)dp } / ‘(xj)]?,jﬂﬁdﬂ(xi)
/ i(@5)]; ;= 1HB Ti Hdﬂxz
IS* 2 /ndet i@, - 1HB o Hdﬂ i) (1.15)

oes*
|S*\ Z /n sgn(o) det [A;(z;)] (T, Hdu(wi)
(2o, Hdu x;),

oceS*

s 115
1 n -
=51 /. det [A;(z,)]7,_, > sen(o ];[

ocesS*



where sgn(o) denotes the sign of the permutation o. Note that the last summation gives the product of
the determinants det[B;(x;)]; jer,. Together with we obtain (L.13). The other identity (L.12) also
follows by noting that the determinant det[B;(z;)¢ (z, 1 equals to the product of the determlnants of
the blocks along the diagonal line, since the matrix [B (4,5)]7j=1 is a block matrix with off-diagonal
blocks all equal to zero. O

)]ZL]
i(75)p

The structure of this paper is as follows. In section [2| we will show that there is a way to simplify the
formula . More explicitly, the z-integrals can be evaluated, where the resulting formula can be further
simplified as a Fredholm determinant in Proposition In section (3], we show that the new Fredholm
determinant formula matches . We remark that we actually obtained several different formulas for the
parabolic Airy process through the computations in this paper, see the equation (2.21]), Lemmas [2.3 . .
Proposition and equations ([3.5] , - We put forward Proposition as a representatlve since it is
the simplest formula that only 1nv01ves the contour integrals.
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2 Contour integral formula of the parabolic Airy process

In this section, we will first state the main result, a contour integral formula of the multipoint distribution of
the parabolic Airy process in section See Proposition This formula is derived from the multipoint
distribution formula of the KPZ fixed point by [Liu22a]. We will introduce the formula of [Liu22a)] in section
and prove Proposition in section

2.1 Contour integral formula for the parabolic Airy process

In this subsection, we introduce a multipoint distribution formula of the parabolic Airy process, which is
given by a Fredholm determinant expansion in terms of contour integrals.

Assume that m > 1 is a fixed integer, and a1, ..., Qm, B1,-- -, Bm are fixed real number. We also assume
that o < -+ < ayy,.

Define the functions

filw) = e~ 5w tenwt i <<y (2.1)

)

and
( ) 1= )
Fi(w) = .
) { fiw)/fia(w), 2<i<m
efgw Staqw +,31'LU i=1,
e(ai—ai—l)w +(Bi_6i—1)w’ 2<i<m.

Denote Cy, := {z € C: Re(z) < 0} the left half of the complex plane. Define a function K : ({1,...,m} x
CL)? — C as follows,

[fon ] i
27r1f1( (z—v)(v—u)’ ’

(
/2m /dw fl((z | 1., Folue) Caci<m.

271 fi(0) (2 — uz) - TTib(ue — wesn) - (s — v)(v — )

K(i, 2 j,u) =




Im

iz

Figure 1: The integration contours in the definition of K.

where the integration contour of v is any contour on the right half plane that goes from coe™™/% to coe™/5
EL and the integration contour of u, is a contour between —oo and z on the left half plane that goes from
ooe2m/3 to c0e?™/3. Moreover, the integration contours of us, ..., u; are disjoint and ordered from right
to left. See Figure [I]| for an illustration of the contours. Note that our choices of the integration contours
ensures the integrals are absolutely convergent and hence well-defined.

K can also be viewed as an operator on L?({1,...,m} x ') if ', is a contour on the left half plane such
that f; decays sufficiently fast along the contour. More explicitly, we choose

Iy = {—1 + et/ > O} , (2.4)

—2mi/3

with the orientation from ooe to coe?™/3. With this choice, we define the Fredholm determinant

det(I 4+ K) by its series expansion

=1
det(T+K) = kzo o o

k dU1 duk
d t 617 l7€ ’ B 2.
/FL /FL ¢ B ’ uj)]lj 1 27‘(’1 ( 5)

1<£1, €k<m

or equivalently by counting the number of i’s appearing in the first index in the above summation,

_ i (@), 5, 0)
det(I+K) = Y |H H/ o det K(iug s joug) )] AL (2.6)

E1yes o >0 kil ko i=1,_

where the row and column indices of the determinant above are chosen from the set {(,4;) : 1 <i <m,1 <
EAZ» < k;}. In the two formulas above, and other similar formulas in the rest of this paper, we view the empty
product, integral, or determinant as 1. Thus, the first term in both expansions is 1. Moreover, it is standard
to use the Hadamard’s inequality to verify that the above multiple integral and the summation are absolutely
convergent due to the fact that K decays super-exponentially fast along the contour I'y,.

Proposition 2.1. Recall oy < -+ < . We have the following formula for the m-point distribution of the
parabolic Airy process A(«)

P (ﬁ {A(os) < m) — det(I+K), (2.7)

i=1

10ne could choose the angle of the v-contour to be +m/3, which is a standard choice for functions with a cubic exponent.
We choose £7/5 here to be consistent with the rest of the paper, where we need to ensure not only 1/f;(v), but also 1/F;(v)
which has a square exponent, to decay along the v-contour.



where the Fredholm determinant det(I+ K) is defined in (2.5)).
When m = 1, we set a; = a and 3; = 3. The operator K is defined on L?(I'y,,dz/27i) with kernel

1.3 2
e~ zu’tou +pu dv
K(u§u,) = / L3 tavi+8u 1 27
Ip €3 (u—v)(v—u') 2m

= /OO Ly (u; A) Lo (X u')d, (2.8)
0

where T'g is any contour on the right half plane that goes from coe™™/5 to coe™/5,

7lu3+au2+,8u
e 3 1 dv
Ly(u; \) = —5 Py
30 4av+(B+Nv q — v 27
I © (2.9)
) e—%u3+au2+(ﬁ+>\')u do , ’
N _/0 /rR o= 5V Hav?+(BHAFN v 2
and )
Lo(Mu') = M. (2.10)
Note that
oy = [ [ it [ ey
o Jry 27 Jrg 27 (2.11)
L e / AL(B+® + A+ MAI(B + o + N + N)dN,
0
which is the conjugated Airy kernel (up to the sign and parameter shift). Therefore, we obtain
P(A(a) < B) =det(I+ K) = det(I + LyL1) = Fgue(B + o?), (2.12)

which recovers (1.5)).

2.2 Multipoint distribution formula of the KPZ fixed point

In this subsection, we will introduce the multipoint distribution formula of the KPZ fixed point as discussed
in Theorem [Tl

Assume that («;,7;), 1 < i <m, are m points in R x Ry satisfying (a1, 71) < -+ < (@m, Tm). Then, the
joint distribution of HXPZ%(qy;, 7;), 1 < i < m, is given by

m m—1 d ;
]P) (m {HKPZ(ai;Ti) S 52}) = fi) o fi)D(ath) ..... (ocm,‘rm)(z;ﬂh L aﬁm) H W7 (213)

i=1 i=1 ~ #i)
where z = (21,...,2m-1), and Da, r),....(am,mm)(Z; B1s- - -, Bm) is a function explicitly defined in [Liu22al.
Below in this subsection we suppress the parameters and write D = D(q, 7,),....(am,rm) (% B1, -+ Bm) for

notation simplification when there is no confusion.

There are two equivalent formulas of D in [Liu22a], one in the form of a Fredholm determinant of an
operator, and the other in the form of a series expansion (of the Fredholm determinant). We will introduce
the expansion formula, since we will not use the operator form of D in this paper.

We first define the functions

1

fi(w) =e"3

nw3+aiw2+[3iw’ 1<i<m, (2.14)
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Figure 2: Illustration of the I'-contours when m = 3. The two contours I'1 1, and I'; g are thickened.

and
Fi(w) = .
{ fi)fia(w), 2<i<m,
okttt i, i1, (2.15)
- _%(Ti_Ti—l)w3+(ai_ai—1)'w2+(ﬁi_B'i—l)'w’ 2<i<m
These notations are consistent with (2.1)) and (2.2) when 7y =+ =7, =1
We also introduce the notation of Cauchy determinant
- 1 n i p(wi —w;)(w; — w;
C(W,W) -— det |:~:| — ( )n(n 1)/2 H1< i <j< ( J 1)( J Z) (2.16)
wl_w] i,j=1 Hz 1]._[] 1( wl)

for any n > 1, and any vectors W = (wq, ..., wy), W = (y,...,%,) € C". Note that in the definition, the
dimensions of W and W have to be the same.

Another related notation we need is the following operation LI of two vectors. If W = (wy,...,w,) € C"
and W' = (w),...,w),) € C" are two vectors, define their conjunction to be

WI_IW’:(wl,...,wn,wll,...,w;/)G(C"Hl/. (2.17)

Finally, we introduce 4m — 2 contours as follows. Let Fm Ly ,Fg"L, Ty, 09, ..., Tt ordered from

left to right, be 2m — 1 contours on the left half of the complex plane. Each of them goes from coe=27/3 to

o0e?™/3 . Moreover, let F%R, . ,FiQY,‘R,Fl,R,Fg}‘ﬁ, .. ,I‘%tR, ordered from right to left, be 2m — 1 contours

on the right half of the complex plane. Each of them goes from ooe™"/5 to ocoe™/>. Note that the angles of
these right contours are £m/5 instead of +m/3 ﬂ See Figure |2| for an illustration of the contours.
Now we are ready to define the integrand D.

Definition 2.2. The function D = Da, r),....(am,mm)(Z; B1s - - -, Bm) is defined by the following series expan-
ston

D= ) ;Dn, (2.18)

... 1)2
pr 0 (M m)

2When the time parameters are strictly ordered 71 < - -- < Ty, we could choose the angles of the right contours to be +7/3.
When the time parameters are not necessarily strictly different, we need to bend the right contours to ensure the convergence
of the integrals in the formula. See [Liu22al discussions after Definition 2.25], or more recently [LZ25| Proposition 3.1].



where n = (ny,- -+ ,Ny), and

D'n, =D n;(1,T1),.-es (am, Tm)(z;/Blﬂ"'75m)
m—1

Hl—zl (1 -z by

=1
=2 6=1 — Zi—1 iix,]L 27Ti 1 — Zi—-1 I‘?}l}j 27Ti f=1 FI,L 27Ti (2.19)
H H d’l}é:) _ Zi—1 / d'UZ:) ﬁ dvéll)
=2 f=1 1-— Zi—1 ii‘,‘R 2mi 1-— Zi—1 r‘?li{ 27 =1 iR 27
m . , . A LI AN
c(v,ymy. H CU® v, y@ gty . H ! f?) 7
i=1 i=16;=1 Fi(“zi )
where the vectors U™ = (ugi), e ,ug«f)), V) = (vgi), e ,Uffi)) for1 <i<m, and UM™YVt gre both

empty vectors.

Tt is direct to check that F;(u) (and 1/F;(v), respectively) decays super-exponentially fast as u € Fm Tyt
(ve I““RUFf‘l‘{, respectively) goes to infinity when ¢ > 2, or uw € I'y 1, (v € 'y g, respectively) goes to mﬁmty
when i = 1. One can show that the integrals in D,, are absolutely convergent, and the summation in
is absolutely convergent uniformly for (z1,...,zmn—1) as long as all the norms |z;|, 1 < ¢ < m, stay within
a compact set of (0,1). Similar expansions have been discussed in [Liu22al [Liu22bl TW24| [LZ25]. We refer
the readers to the discussions after Definition 2.2 in [LZ25] for more details of a similar convergence.

2.3 Proof of Proposition using Theorem

In this subsection, we consider a special case of the formula when =---=7, =landa; < - < Q.
After simplifying and rewriting the formula, we will show Proposition

Recall the discussions at the end of the previous subsection. We can change the order of the integration
and the summation. Consider the z-integrals inside the summation and denote

m—1
~ A de
D,, = Dy, =¢--- 9 D, ; _ 2.20
n LT R o (ﬁ17 aﬂm) ﬁ o n,(al,l),.w(a,,,“l)(za /Bla aﬁm) 21;[1 27rizi(1 — Zz) ( )
Then we have

P (ﬂ {A() < 5z}> = Z ﬁf)n (2.21)
i=1 Lyerytm >0 ’ me

Below in this subsection, we will first evaluate the z-integrals by simplifying the v-integrals in D,,. This
gives Lemma 2.3l We further re-organize the u-integrals in the formula and give a more compact formula for
Dy, in Lemma Finally, we will show the summation in (2.21]) is the same as det(I + K) in Proposition
21

For notation convenience, we set
PL=TyL, TYE=TIig (2.22)
throughout this subsection.

Lemma 2.3. Recall that a1 < -+ < Q.



(i) We have

R mo dul? dv'?
D,, = £ £
_H H </ ;I)L 27Ti \/F?li{ 27Ti

et ) (2.23)
M. @y . (4) (i+1). 17(4) (1+1) i e
cv® o) J[cwDuvirvo Lo HHF oI
i=1 i=14,-1 Fil Vg,
where all the notations are the same as in the previous subsection.
(i) If ny > -+ > ny,, we have
m—1 m  n; ) m  k; ~ (1)
. n;! du, dvev
D"_HkT'HH/;n 2mi HH/F 2mi
i=1 i=14¢;=1 i, =171 1R
' ) (2.24)
m m ng F(u(l))
C(V(m) - v, U(l)) ) H C(U(i)' UG+ f/(i)) ) H 1U=1" 174 )
R ’ L e ey
=1 =1 H&-:l f’(vfi )
where k; = n; — nip1 for 1 <4 <'m, with the convention that n,11 =0, and Vo = (U§1)7 ... ,f),(:)) for

1 <1 <m, and the functions f; are defined in (2.1)). Moreover, for all other n we have D,, = 0.

Proof of Lemma[2.3 The proof of part (i) is basically the same as that of Lemma 6.1 in [LZ25]. We look at
the expansion of the v-integrals in (2.19) by only taking one contour for each variable in one term. We give
an example to illustrate such an expansion' (e1 [ 5 dr+ e J 1, dz)(c) J I de’ + ¢ [ I dz’) can be expanded

to the sum of the following 4 terms ¢;c}, fI dx fI, do’, 1 <, < 2. After the expansion, we have a sum

of terms each of which is a multiple contour mtegral Wlth each v-variable running over one single contour.
Consider a term where each v-contour is a single contour. If any of the véi) contour is F;nR, assume ¢ > 2

()

is the largest index with this property. With this assumption, we can deform the v,’ contour from FmR to

R+ F;“R for any R > 0 without encountering any pole since the only possible poles are u(] )’s on the left

half plane, v(, erin, RUTY g, and véljll) ['9YS g which are all on the left side of Flan, see Flgure

Now we let R — +00 and the vé 9 integral decays to zero since 1 / F; (Ue ) decays super-exponentially fast as
R grows for any i > 2, see the definition of F; functions in . Thus, the integral vanishes if any I‘mR is
included in the term from the expansion of - Now we drop all these vanishing terms and have only
one surviving term

m—1 0)

du(i) 2 du dv@
Dn=[](1-z)™ b _~itl / b / e ... 2.25
n=110-=2) H H (14 ) / oo 2m Lz Jrew 2m ) Jrow 200 (2.25)

i=1 1=24;,=

where we suppressed the integrand, which is irrelevant to the z-variables. The function above is analytic
in z; at the origin for each ¢. Hence, evaluating the z-integrals fo e j;O D, 1%, % is the same as
inserting z; = 0 in the expression above. This proves (2.23)).

Now we prove the second part of the lemma. It requires evaluations of some v-integrals recurrently, which

we explain below.

We start with the formula (2.23) and evaluate the integrals of vém) along the contour FO‘“ If we deform

one vi™ contour to I'" .. then the v(m)—integral along the new contour I'" . vanishes, as we discussed in
L m,R» lom m,R ’

the proof of part (i). This implies that each integral of véz)

of the integrand when vé:j)

along the contour F%l,tR only leaves the residue

(m—1)

encounters one of the poles v 1 </l,_1 < npm_1. Moreover, due to the

Cauchy determinant structure, the factor C(U™); V(™)) vanished when we evaluate two véZﬁl) variables



at the same pole (e.g., when both vgm) and vém) equals to v (m 1)). This implies that the integrals of
v%m),. uﬁ[jf} give zero (hence D, = 0) unless ny, < N1 and vgm),. vﬁ;’,ﬁ) are evaluated at different
poles among vgm 1), e ,v,(;nnj). Also note that the integrand is symmetric on the poles vgmfl), e 71)7(;2;1).
Therefore, there are ny,—1 + (N1 — 1)+ (Nm—1 — N + 1) = nyp—1!/kim—1! ways to evaluate the residues
and each way gives the same result. Without loss of generality, we evaluate the pole of vém) at v(m D for
each ¢, = 1,...,n,,. This evaluation gives
PR / duy! / AR / duy””
™ k! pale Rt i 27i rout 27i ooy 27i
m—2
i % i i m— m—1
cvO,uM)y . TT cw® uvith, v@ iy . ¢ (U< D gm V[; +1)nm,1]) (2.26)
i=1

.C (U(m). V(M—l)) [ I1es Fi(ug))
T nm] e N D)
H (UK ) Hfmzl Fp, (Uzm )

where we used the following notation

(v(i) o vg)), 1<a<b<mn;, 1<i<m. (2.27)

V(Z) . 8 Vais

la,b] "
We continue the same argument for the véfjll) integrals. Similarly, we get Dp = 0 if nn_1 > Mo,
Moreover, when n,,—1 < n,,_o, the residue evaluation gives

n;

B :nm,llnm,g!mdﬁ / duZ)/ dvg) ﬁ H/ dug)
n km 1- Iﬂ,rn 2' - ) i‘nL 27Ti Foli{ 27Ti m 27Ti

i=1 £;=1 =m—1¢;=1
m—3
@. @) (@) (i+1). /(9 (l+1) @. G+ (m=2)
c(vO. gy TT cu® uviD, v Ly H C (U Uy, nJ]) (2.28)
i=1 j=m—2
(@)
C (U(m), V[gm—?)) Hz( ; Hz _y Filuy,”) ( >
o [T T File)) - H]mlné—l j(ve )
Repeating this procedure until only U( ) integrals are left, we obtain D, = 0 if any n; > n;—1 holds,
2 < i < m. Moreover, if ny > --- > n,,, We end with
m—1 m Ny @) n (1) (1)
. n;! du@. L d’U/Z di}l
D, = — 2 — —
" Hk'HH/ 27 H(/F 27 /F 27
=1 Jj=24;=1 j,L l1=1 1,L 1,R (2 29)
(') ’
M. g (@), G+ S0 (m). (1) I~ 1H4 =1 Filug))
cvW.u H C (U TN +1+1nJ]) C (U % n]) .

T, T F(vg >>

Note that, by recalling (2.1]) and ( .7

HHF 2 =11 H £ (2.30)

j=1¢;=1 j=14j=nji1+1
By relabeling the v(!-variables in (2.29)), we obtain (2.24). O

The next step is to further simplify (2.24) by re-organizing the wu-integrals. We will assume that n; >
- 2> Ny, since otherwise Dy, = 0 as shown in Lemma ﬁ

10



Lemma 2.4. Assume k; = n; — n;41 > 0 for each i = 1,...,m, where we set ny,11 = 0 for notation
convenience. Then we have

. (4)

m—1 d’l)(A m
A ng: l; S Y ~ (i A(z) 1
D, = / / —Lcv;0) - T det |hi(aD, 6,7 : :
(21:[ > ;l_[llH L 27r1 rop 27l Z]-_-E [ L,b:l il:Ilé,i—l fl(ﬁg))
(2.31)
where R . . . R R
V=vmy.uv®O g=0m™y...0uW (2.32)
with o ‘ ‘ - ‘
o9 = (a 5”,...,a,i?>, VO =@, ), 1<i<m, (2.33)
and the functions h;(u,v) are defined for all (u,v) € Ty, x 1 r as follows
a (u) 1 =1,
u—"0’

LR F (u (2.34)

H/ du] Hj_ilj( J) 1( ) L 2<i<m.
vy 270 (u = ua) - TTZ5 (v — wjg) - (s — )

We will use the following simple lemma repeatedly in the proof of Lemma [2.4]

Lemma 2.5. Let ¥ be a contour. F is a function on ¥™ which is antisymmetric, i.e., F(wy,...,w,) =
sgn(o)F(wy,, ..., Wy, ) for any permutation o of {1,...,n}. Assume that the integrals in this lemma are all
well-defined.

(i) Let p;, 1 <i < n, be functions. Then

/ F(wy,...,w,)det] i(wj)]?,g‘:lndwi :n!/ (w,...,w Hp1 w; )dw;. (2.35)
n Z:l

n

(ii) Assume k <n. Let w , 1< j <k, be complex numbers on a contour X!, and q be a function on X x X'.

Then i
/ (wi,...,w H q(wj, wj) H dw; (2.36)
" j=1 i=1

is antisymmetric in w’l, C W

Proof of Lemma[2.5. For (i), one just needs to expand the determinant and use the antisymmetry of F. Now
consider the second part. For any permutation of o : {1,...,k} — {1,...,k}, we extend it to a permutation
on {1,...,n} by defining o(i) =i if i > k. Then

k n
/ (wi, ..., w H q(wj,w Hdwz—/ Fwal,...,won)Hq(ng,w;j)Hdwi
" j=1 " j=1 i=1
k n
= / Fwey,. -, Ws,) Hq(wj,w;)Hdwi (2.37)
" j=1 i=1

=

:sgn(a)/nF(wl,...,wn)H q(w;,w Hdwl,

=1

where we relabeled the w-variables in the first step, and applied the antisymmetry of F' in the last step.
This proves the second part of the lemma. O

11



Now we are ready to prove Lemma

Proof of Lemma |2.4 The first part of Lemmalmphes that we could replace a determinant det [p; (wj)}l =1
by a single term n' [T, pi(w;) in a n-fold integral with respect to wy, ..., w, as long as the remaining part
of the integrand is antisymmetric in these variables. We apply this lemma to the Cauchy determinant
cum, @y V(l)) in and use the fact that the remaining part of the integrand is antisymmetric
in the variables ugl), ... ,unl1 due to the first Cauchy determinant C(V(m) u---uva, Uy = C(V; Uy,
Thus, we could replace C(UM; UR) V(l)) by

no k1 1
! H H “om (2.38)
22 h=1"%, ~ Y,
where A
aél) - SQ)% bi=1,... .k =ni —no. (2.39)
On the other hand, we also note that the remaining part in the integrand is also antisymmetric in v( ), ceey A](€11)

due to the Cauchy determlnant C(V(m) U---UV®: u®). Thus, we apply the first part of Lemmaﬁ 2.5 again,
and can replace H . A(l) (1) in by the Cauchy determinant (k;!)~'C(U®M); V), where

oW =@, al) = Wl u). (2.40)

no+12 > ’I’Ll

Now we have the following expression for Dy

m—1 m. n (@) m ok ()
A n;! due do,’
Dn i
=11 5 llll/m o HH/F =
i=1 i=14;,=1 i, L 1,R
! 5 0. 770 iy T 1 11— F(U(Z))
kl LC(V; UMy e va ).HC(U();U( )70 H T N
1! i=2 lo=1Up, — Uy, =1 H&:l fi( 0, )
(2.41)

Note that comparing to (2.24)), the formula above simply did the following replacement in the integrand

1. 77(2 (1 ny! (1), Y (1 M 1
cUuM;u@uymy - HC(U( ), vy H ORNOR (2.42)
lo=1 Lo 52

Now we consider the factor C(U?); U®) L V(2)) in (2.41). Note that the remaining part is still antisymmetric
in u(z) . ,ugi) by part (ii) of Lemma Similarly to the previous factor, we have the following replacement

in the 1ntegrand

- P - - e 1
CU@; U@ uv @) - 22O V). [T NORNET (2.43)
z la=1 Uy — Uy,
where . @ © )
U@ =@, al)) = W, ..., u®). (2.44)
We repeat this procedure and finally arrive at
m—1 m
R duZ dvZ
o= (T02) M1/, % v
i=1 i=10,=1 1
(2.45)
o Oy TT oo ®. o I Filug)
c(v;Uu )'H v HH (z 1) ) H k f—(@(;))’
=1 1= 22_1 2, =1 ;=1 1 27

12



where o _ _ ,
U@ =@, o) =@ L, u?), 1<i<m (2.46)

n1+1+1’

Now we absorb all the u-factors in the integrand of | into the Cauchy determinants. Note that all

the variables u( D=y i, forl<i<mand1l<§¢; < k are dlstlnct Moreover, for each 1 < £ < nq, there
1+1

exists a unique pair (z,&) such that 1 <i<m, 1< Ei < k;, and £ = n;1 + Ei. We group all the factors

involving qu ) together for each fixed ¢, which give

1:[ ]+1 - Fi(u). (2.47)

Then we absorb this term to the £;-th row of the Cauchy determinant C(U®; V(). Note that every u-factor

is uniquely absorbed into one row in one Cauchy determinant. Thus, we can evaluate each ué)

inside the corresponding Cauchy determinant if ¢ > 1. The restriction of ¢ > 1 is because ugl) also appears
in the first Cauchy determinant C( V. UM), Now the Cauchy determinant C(U®; V() becomes a new

determinant whose entry at the /;-th row and Ei—th column, 1 < /;, Zi < k;, is given by

9 i) i—1 j @
/ ) / w T _B?) R = e (02 ). (2.48)
g, 27 p 2y — Y e - of) e

i

integral

where ¢ = n; 1 + ?;. Note that u;) = 11;). The identity (2.31]) follows after relabeling the variables in
U, O

At the end of this subsection, we prove Proposition
Proof of Proposition[2.1, We apply Lemma for (2.31)) and get, when k; =n; —n;41 >0, 1 <i <m,

_ (ni!)* 1 ﬁ, a®), 1 1 dv
=117 Hl—_[/F ani 0 /th (3 )fl( ) oo 2 ’ (2.49)

=1 i=1 . . 5 -5
£; ¢ ('Lvei)%(‘%[]‘)

where the row/column indices are chosen from {(,6;) : 1 < i <m,1 <4¥; <k} Itis direct to check
the entry in the determinant equals to K (z, ue 17, U EJ)) see the definitions of K in (2.3)) and h; in (2.34)).

Inserting the above formula in 7 we obtain

P(ﬂ M(m)é&}) = 3 'H/ %1 det ( ﬁz);j’ﬁg))}(i,éi),(j,éj)' (2.50)

i=1 Lm0 2t

This is the same as the Fredholm determinant expansion (2.6)). This completes the proof. O

3 Equivalence of two Fredholm determinants

In this section, we further rewrite the Fredholm determinant formula in Proposition and show the
equivalence between this formula and (1.1)).

13



We first conjugate the kernel K and rewrite the Fredholm determinant det(I + K) to a new Fredholm
determinant of an operator defined on L?(R.). Recall the definition of the kernel K in (2.3). It can be
rewritten as

Kli,zidin) = [ Lali,s ) La0 )i (3.1)
0
where
/dv hHz) 1 i=1
27r1f1( f)er z—v’ ’
Ly (i, 2 A ; 3.2
e / /dw A [To—s Fo(ue) 2<i<m >
omi 11 | 2mi fi(w eM (2 —uz) - [Tip(ue — uegn) - (wi—v) ~— =
and
Lo(X; j,u) = e (3.3)

The integration contours in are the same as in the definition of K in , but here we will make a
specific choice of the contour for notation convenience when we do the contour deformations later. We take
the u contour to be the same as I'; 1,, and the u,, 2 < ¢ < m, contours to be F?}L. We also set the v-contour
to be I'y g. We will also use the contours F?f, 2 < ¢ < m. All these contours are defined the same way as
in Section [2.2] See Figure 2] for an illustration.

One can also view L; and L9 as operators, and denote L = Ly L; the product operator with the following
kernel, after using the above notations of the contours,

m

L(\ 0) = Z/F %LQ(A,Z,uI)Ll(z uy; 6)

= Jro. 27

- duy duy f1 Ul) A HZZ o Fe(ug)
- ;/Fm 271'1/ 271 H/ 2mi () TT22 (e — wegr) - (us —v)

Recall that det(I + K) is well-defined by its series expansion which is absolutely convergent. Also note that
if any of the two Fredholm determinants det(I + AB) and det(I + BA) has an absolutely convergent series
expansion, then the identity det(I + AB) = det(I + BA) holds and both have absolutely convergent series
expansions. Therefore det(I + K) = det(I+ L), where

[e’e) 1 foe) %) n
det(I+L)=>" o /O .. /0 det [L(Ai, A5,y [ ] i (3.5)
k=0 i=1

Moreover, the summation is absolutely convergent.

(3.4)

It turns out that the kernel L can be further simplified.

Lemma 3.1. We have

L(),0)
mo , . : (36)
=> (1) A1 Asiz, 1) H Blie, yesiet1, Yern) - Aa(in 13 0) [ [ dve,
k=1 1<11< <1 <m (=1
where 4 1 d
Ar(Ned~) — (W) e = [ Y << 3.7
1( 7157) Tis f (U)e 271_17 2(1777 ) o fi(v)€(9+7)v 2’/Ti7 <t1sSm, ( )
and ,
Bli,y;#',y) = / e I Rw)e2, 1<i<i <m (3:8)
) ) Y R 27Ti7 — —

l=i+1

14



> Re

Figure 3: Deformation of the contours: Initially, for each 2 < ¢ < k, the contour of w;, is the dashed contour
9 s Tt is deformed to a solid vertical line. After the deformation, Re(u;,) < Re(u,) < --- < Re(uy,) <
Re(v) when u;, € 9"}, v € 'y g, and u;, from the deform contour, 2 < ¢ < k.

Proof of Lemma [3.1] Recall the definition of L(A,0) in (3.4). We deform the contours I'}; to I'¢Yy, ¢ =
2,...,1, subsequently. Note that the us-integral will result in two terms: one term gives the residue of the
integrand when uy = uy_1, and the other term gives the integral along the new contour I‘O‘lt By sorting the
terms, we get

i/ dul/ H/ dug f1 U1) v [Ti—s Folue)
~ Jr,, 27 F1R27r1 w27 (e TT0Z (we — weyr) - (wi — v)

g dui1 du, dv fi (uu )eMtil Hf 2 H] =ig_1+1 (u”)
Z Z o i 2 f;(v)e k—1 (3.9)
— quL T F?I:,tL T Jry g 27 v)

1 k=11<i1 < <ip=1 (=1 (uie - uie+1) . (U'Lk -
m

=1
where we set F"“t I'y 1, for notation convenience. Recall the definition of the functions F; in (2.2).

The functions HJ i1
vertical line since oy — a; > 0. Thus, we could deform the I'Y"}, 2 < £ < k, to vertical lines as long as
these contours are of the same order, and lie between the two contours I'9"y and I'y . See Figure |3 I 3| for an
illustration.

With the new contours, Re(u;, — u;,,,) <0 for all 1 < ¢ <k —1, and Re(u;, —v) < 0. Hence we write

~.

)

/ dUil C / dUik / ﬂ fil (uil)eAUil Hf 2 HJ =ip—1+1 (UW)
Fout Fout

- - - : %
1<11< i <m 2mi . 2mi Jp, , 27 fir (v)efv 6:11(“1'2 - uiz+1) (g, — v)

Fj(w) = elew —a)w?+(By=B) decay super-exponentially fast when w — oo along any

1 o 1 >
- _/ el dyy, = / e dry. (3.10)
Uiy — WUipyy 0 Ui, — U 0

The lemma follows immediately. O

With Lemma we are able to express L as the product of three operators. We extend the definition
of B to

@ =mw | Fy(w 7,, 1<i<i’ <m, and 7,7 >0,
B(i,vi',y') = / 4111 (3.11)

0, elsewhere.
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Then .
L=—4 (Z (-1)’63’6) Ay. (3.12)

Similarly to the arguments before (3.5)), we can write
m—1
det(I + L) = det < (Z ’fB’f) ) , (3.13)
k=0

where A = Ay Ay with kernel given by

d’U f u 6(9"1")’)“
A oo 4 3.14
Al %3,8 / /[‘1 © 271 /Fl 27i fi(v) F(v)eOFNv v ( )

Now we use the fact that B is strictly upper-triangle (with zero diagonal entries), hence multiplying the
operator I + B inside the Fredholm determinant will not affect its value. This implies

m—1
det(I + L) = det ((1 + B) (I - (Z (—1)k3k> A)) = det(I+ B — A), (3.15)
k=0
where we used the fact that B™ = 0 by its definition.
The last piece of the proof we need is the following lemma.

Lemma 3.2. We have the following identities.
(i) For alll1 <i,5 <m, and \,0 >0,

A(i, A3, 0)
— o3l =Bt 3al+(0+8;)a; /Oo e (VAL (N + By + of +7) AL (04 B; + oF +7) d. (8.16)
0
(i) For all1 <i<j<m,
B(i, A\ 4,0)
_ 1 e—m(ﬁj-‘r@—ﬂi—)\F
2y/m(aj; — ) (3.17)

= e 3ol = BaitFa+(0+5;)o; / e~ (T VAL (N + B + af + ) AL (0 + Bj + af +7) d.

— 00

Proof of Lemma[3.2 Recall the definitions of f;(w) = e~ 3wl taiw’+hiw iy , and the Airy function in
. Inserting these in , we obtain by a direct computation.

Similarly, recall the definition of F, function in . The first equation of follows from a direct
computation of (3.11)). The second part follows from the following identity (see [Oko02, Lemma 2.6])

o 23 atb . (a—b)2
T2 Aj Ai b)dz = ez 2 T m . 1
[we i(z+a)Ai(z+b)dz = 2\/@ 2 =, x>0 (3.18)

O

Now we insert this lemma to (3.15)). The Fredholm determinant equals to (1.1]) after a conjugation and
a simple notation change.
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