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Abstract

The KPZ fixed point is a (1+1)-dimensional space-time random field conjectured to be the universal
limit for models within the Kardar-Parisi-Zhang (KPZ) universality class. We consider the KPZ fixed
point with the narrow-wedge initial condition, conditioning on a large value at a specific point. By
zooming in the neighborhood of this high point appropriately, we obtain a limiting random field, which
we call an upper tail field of the KPZ fixed point. Different from the KPZ fixed point, where the time
parameter has to be nonnegative, the upper tail field is defined in the full 2-dimensional space. Especially,
if we zoom out the upper tail field appropriately, it behaves like a Brownian-type field in the negative
time regime, and the KPZ fixed point in the positive time regime. One main ingredient of the proof is
an upper tail estimate of the joint tail probability functions of the KPZ fixed point near the given point,
which generalizes the well known one-point upper tail estimate of the GUE Tracy-Widom distribution.

1 Introduction

1.1 Background and motivation

The KPZ fixed point is a (1+1)-dimensional space-time random field which has been proven or conjectured
to be the universal limiting space-time field of a large class of interface growth models in the Kardar-Parisi-
Zhang universality class [BDJ99, Joh00, TW08, TW09, ACQ11, BC14, BCG16, MQR21, QS22, Wu23, DZ24,
ACH24]. It was first rigorously constructed in [MQR21], and could be viewed as a marginal of the directed
landscape [DOV22] which is a universal random metric for the Kardar-Parisi-Zhang universality class. There
have been many studies on the properties of the KPZ fixed point [CQR13, CHHM23, Dau24, QR22, BPS23,
LW24, FL24, DDV24, DT24]. In this paper, we mainly focus on the limiting behaviors of the KPZ fixed
point when the height function at a point becomes extremely large. More explicitly, if we denote HKPZ(x, t)
the KPZ fixed point with the narrow-wedge initial condition, what does HKPZ(x, t) look like conditioning on
HKPZ(0, 1) → ∞?

This question was partly answered in [LW24, NZ22]. It turns out that, before the high point HKPZ(0, 1) =
L, there is a strip of size O(L−1/4) along the line between (0, 0) and (0, 1). Within this strip, the KPZ fixed
point fluctuates ofO(L1/4) and the limiting fluctuation is given by the minimum of two independent Brownian
bridges. More explicitly, it is proved in [LW24] thatHKPZ

(
x√

2L1/4
, t
)
− tHKPZ(0, 1)

√
2L1/4

∣∣∣∣∣HKPZ(0, 1) = L

→ min {B1(t) + x,B2(t)− x} (1.1)

in the sense of convergence of finite dimensional distributions when L goes to infinity. Here x ∈ R, t ∈ (0, 1),
and B1 and B2 are two independent Brownian bridges. The conditional distribution should be understood
as a limit of the distribution conditioned on {HKPZ(0, 1) ∈ (L− ϵ, L+ ϵ)} as ϵ → 0. On the other hand, after
the high point, the KPZ fixed point returns to an unconditioned KPZ fixed point with the narrow-wedge
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initial condition. This was proved for the convergence of the one-point distribution in [NZ22] as below

P
(
HKPZ(x, 1 + t)−HKPZ(0, 1) ≤ h | HKPZ(0, 1) = L

)
→ FGUE

(
h

t1/3
+

x2

t4/3

)
= P

(
H̃KPZ(x, t) ≤ h

)
(1.2)

as L goes to infinity. Here h, x ∈ R, t ∈ (0,∞), H̃KPZ denotes a new KPZ fixed point with the narrow wedge
initial condition which is independent of HKPZ, and FGUE is the GUE Tracy-Widom distribution.

The two results above imply that HKPZ(x, t) has two different limiting behaviors before and after the
conditioned high point. Both the scaling exponents and the limiting fields are totally different in these two
time regimes. Therefore, it is very interesting to understand how the transition occurs. The main goal of
this paper is to investigate the limiting behaviors of HKPZ(x, t) near the high point (0, 1), as HKPZ(0, 1) goes
to infinity. Our main result is a limit theorem for the conditional field {HKPZ(x, t) | HKPZ(0, 1) ≥ L} near
the point (0, 1) as L → ∞. We are also able to show that the limiting field, which we call the upper tail field
of the KPZ fixed point, interpolates the Brownian-like field (1.1) and the KPZ fixed point, as we expect in
the discussions above. It is a new field to the best of our knowledge, and is different from some other known
transitional field from Gaussian Universality to KPZ Universality, such as those reviewed in [Cor16].

There are also recent large deviation results in the upper tail regime which are relevant to this paper.
For example, [GH22] considered the one-point limit shape of the (solution to) KPZ equation at the time
t = 1 when the solution becomes large at the point (0, 1). [GLLT23] also studied the KPZ equation and
obtained the large deviation rate function of the solution in the weak noise regime under the deep upper tail
condition. [LT23] proved the n-point fixed-time large deviation principle and characterized the space-time
limit shape of the KPZ equation in the upper tail. [GHZ23] proved the Brownian bridge limit of the geodesic
in the directed landscape and continuum directed random polymer in the upper tail region. Most recently,
[DDV24] and [DT24] studied the upper tail large deviations of the directed landscape and the associated
marginals. There are also related results for the periodic KPZ fixed point. [BL24] obtained the limiting
conditional field before a conditioned large height location for the periodic KPZ fixed point. Note that when
the period goes to infinity, the periodic KPZ fixed point converges to the KPZ fixed point [BLS22]. Hence,
their result can be viewed as a generalization of (1.1) when the period does not necessarily go to infinity.

On the other hand, it is a natural question to ask the limiting behaviors of {HKPZ(x, t) | HKPZ(0, 1) ≤
−L} as L → ∞, which corresponds to the lower tail regime. The KPZ fixed point in the upper tail
and lower tail regimes behaves very different. For the KPZ equation with a narrow wedge initial condition,
predictions for the one-point limit and large deviations have been proposed in the physics literature [KMS16,
MKV16, KMS16]. Recently, [LT22] established the most probable limit shape for the KPZ equation before
a conditioned extremely negative value at the time t = 2. However, the precise characterization of the
lower-tail limit for the KPZ equation or the KPZ fixed point remains an open problem.

1.2 Main results

The main result of this paper is about the limit of the rescaled KPZ fixed point near a conditioned high
point. The limit HUT(α, τ), which we call the upper tail local limiting field or the upper tail field for short
if there is no confusion, will be defined in Section 2.2 via its finite-dimensional distributions, and

HUT
0 (α, τ) := HUT(α, τ)−HUT(0, 0), (α, τ) ∈ R2. (1.3)

We also recall that HKPZ(x, t) denotes the KPZ fixed point with the narrow-wedge initial condition. The
main theorem is as follows.

Theorem 1.1. Assume that α̂, τ̂ and β̂ are constants.

(a) Conditioned on HKPZ(α̂L−1, 1 + τ̂L−3/2) ≥ L+ β̂L−1/2,

√
L
(
HKPZ(αL−1, 1 + τL−3/2)− L

)
→ β̂ +HUT(α− α̂, τ − τ̂), (α, τ) ∈ R2 (1.4)

2



in the sense of convergence of finite-dimensional distributions as L → ∞. Especially, conditioned on
HKPZ(0, 1) ≥ L,

√
L
(
HKPZ(αL−1, 1 + τL−3/2)− L

)
→ HUT(α, τ), (α, τ) ∈ R2 (1.5)

in the sense of convergence of finite-dimensional distributions as L → ∞.

(b) Conditioned on HKPZ(α̂L−1, 1 + τ̂L−3/2) = L+ β̂L−1/2,

√
L
(
HKPZ(αL−1, 1 + τL−3/2)− L

)
→ β̂ +HUT

0 (α− α̂, τ − τ̂), (α, τ) ∈ R2 (1.6)

in the sense of convergence of finite-dimensional distributions as L → ∞. Here the conditional proba-
bility P

(
· | HKPZ(x, t) = h

)
should be understood as limϵ→0+ P

(
· | HKPZ(x, t) ∈ (h, h+ ϵ)

)
. Especially,

conditioned on HKPZ(0, 1) = L,

√
L
(
HKPZ(αL−1, 1 + τL−3/2)− L

)
→ HUT

0 (α, τ), (α, τ) ∈ R2 (1.7)

in the sense of convergence of finite-dimensional distributions as L → ∞.

Remark 1.2. Note the smaller scaling exponents in the equations (1.4) and (1.6) than those in the formulas
(1.1) and (1.2). Heuristically, we need to zoom in the small neighborhood of (0, 1) to see how the two fields
in (1.1) and (1.2) transit to each other near the point (0, 1).

Remark 1.3. The two limiting fields HUT and HUT
0 are slightly different when conditioning on HKPZ(α̂L−1, 1+

τ̂L−3/2) ≥ L + β̂L−1/2 and HKPZ(α̂L−1, 1 + τ̂L−3/2) = L + β̂L−1/2 respectively. Intuitively, it means that
the scaling is so small that the conditional field

√
L
(
HKPZ(αL−1, 1 + τL−3/2)− L

)
is sensitive to a small

change of
√
L
(
HKPZ(α̂L−1, 1 + τ̂L−3/2)− L

)
.

On the other hand, one can heuristically derive that the two statements in the theorem are equivalent.
For simplicity, we assume that α̂ = τ̂ = 0. We show how one expects the second statement from the first and
the other direction is similar. Assuming the first statement, for points (αi, τi) ̸= (0, 0), 1 ≤ i ≤ m,

lim
L→∞

lim
ϵ→0

P

(
m⋂
i=1

{
HKPZ(αiL

−1, 1 + τiL
−3/2)− L− L−1/2β̂ ≥ L−1/2βi

} ∣∣∣L1/2(HKPZ(0, 1)− L) ∈ (β̂, β̂ + ϵ)

)

= lim
ϵ→0

lim
L→∞

P
(⋂m

i=1

{
HKPZ(αiL

−1, 1 + τiL
−3/2)− L ≥ L−1/2(βi + β̂)

}⋂{
L1/2(HKPZ(0, 1)− L) ∈ (β̂, β̂ + ϵ)

})
P
(
L1/2(HKPZ(0, 1)− L) ∈ (β̂, β̂ + ϵ)

)
= lim

ϵ→0
P

(
m⋂
i=1

{
HUT(αi, τi) ≥ βi

} ∣∣HUT(0, 0) ∈ (0, 0 + ϵ)

)

= lim
ϵ→0

P
(⋂m

i=1

{
HUT

0 (αi, τi) +HUT(0, 0) ≥ βi

}⋂{
HUT(0, 0) ∈ (0, 0 + ϵ)

})
P (HUT(0, 0) ∈ (0, 0 + ϵ))

= P

(
m⋂
i=1

{
HUT

0 (αi, τi) ≥ βi

})
,

(1.8)

where the last equation comes from a few properties of HUT and HUT
0 which will be proved later: HUT(0, 0)

is independent of HUT
0 (αi, τi) = HUT(αi, τi) − HUT(0, 0), and all the random variables HUT(αi, τi) and

HUT(0, 0) have a sufficiently good joint tail probability function which is differentiable. This reasoning is still
heuristic due to the change of the order of limits in the first step, which we don’t have a short argument to
justify. Instead, we prove the two parts of the theorem separately using the steepest descent method.
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Remark 1.4. Assume (x, t) is a given point in R × R+. Note that the KPZ fixed point HKPZ has the
following invariance property (see [DOV22, Lemma 10.2] for example)

HKPZ(x+ αL−1, t+ τL−3/2) +
1

t+ τL−3/2
(x+ αL−1)2

d
= t1/3HKPZ(αt−2/3L−1, 1 + τt−1L−3/2) +

1

t+ τL−3/2
(αL−1)2,

(1.9)

where
d
= denotes the equation in distribution. Thus, the convergence (1.4) can be generalized as follows.

Conditioned on HKPZ(x+ α̂L−1, t+ τ̂L−3/2) + t−1x2 ≥ tL+ β̂L−1/2,

√
L
(
HKPZ(x+ αL−1, t+ τL−3/2) + t−1x2 − tL

)
→ β̂ +HUT(α− α̂, τ − τ̂), (α, τ) ∈ R2 (1.10)

in the sense of convergence of finite-dimensional distributions as L → ∞. And similarly, conditioned on
HKPZ(x+ α̂L−1, t+ τ̂L−3/2) + t−1x2 = tL+ β̂L−1/2,

√
L
(
HKPZ(x+ αL−1, t+ τL−3/2) + t−1x2 − tL

)
→ β̂ +HUT

0 (α− α̂, τ − τ̂), (α, τ) ∈ R2, (1.11)

in the sense of convergence of finite-dimensional distributions as L → ∞.

The proof of Theorem 1.1 is provided in Section 4.

The upper tail field HUT(α, τ) obtained in Theorem 1.1 has the following properties.

Proposition 1.5. The upper tail field HUT(α, τ) satisfies:

(a) HUT(0, 0) is an exponential random variable of parameter 2.

(b) For all x, τ, β ∈ R, we have

P
(
HUT(α, τ) ≥ β

)
= e

2
3 τ−2βP

(
HUT(−α,−τ) ≥ −β

)
. (1.12)

(c) The field HUT
0 (α, τ) = HUT(α, τ)−HUT(0, 0) is independent of HUT(0, 0).

(d) At time τ = 0, the spatial process HUT
0 (α, τ = 0) has the same distributions as Bts(2α) − 2|α|, where

Bts denotes a two-sided Brownian motion with Bts(0) = 0.

Remark 1.6. It is not surprising that HUT(0, 0) is an exponential random variable. In fact, the upper tail
estimate of FGUE (see (3.9) and (3.10) for example) implies

P
(
HKPZ(0, 1) ≥ L+ βL−1/2 | HKPZ(0, 1) ≥ L

)
=

1− FGUE(L+ βL−1/2)

1− FGUE(L)
→ e−2β (1.13)

for fixed β ≥ 0 when the large parameter L → ∞.

Remark 1.7. The last property is due to Duncan Dauvergne. Through personal communication, Dauvergne
told us the property from the perspective of the Airy line ensemble techniques. We verified the property
using the formulas obtained in this paper. These properties in Proposition 1.5 also imply the following
simple result: If X is an exponential random variable of parameter 2, and Z is a standard Gaussian random
variable independent of X, then P(X +

√
2αZ − 2α ≥ β) = e−2βP(X +

√
2αZ − 2α ≥ −β) holds for any

α > 0 and β ∈ R. It is an elementary exercise to verify this identity, and we skip the proof since it is not
needed for our argument.

The proof of Proposition 1.5 is given in Section 6.

If we zoom out the fields HUT or HUT
0 , we are able to see the Brownian-like (for the negative times)

and KPZ type (for the positive times) behaviors. In other words, they are random fields on R × R that
interpolate a Brownian-like field and the KPZ fixed point. More precisely, we have
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Proposition 1.8 (Large scale limits of HUT and HUT
0 ). Both HUT and HUT

0 have the following large scale
limits.

(a) In the negative time regime,

1√
2λ

(
HUT

(
λ1/2x√

2
, λt

)
− λt

)
,

1√
2λ

(
HUT

0

(
λ1/2x√

2
, λt

)
− λt

)
(1.14)

both converge to
min {B1(−t) + x,B2(−t)− x} , (x, t) ∈ R× (−∞, 0) (1.15)

in the sense of convergence of finite-dimensional distributions as λ → ∞. Here B1 and B2 are two
independent standard Brownian motion.

(b) In the positive time regime, both

λ−1/3HUT(λ2/3x, λt), λ−1/3HUT
0 (λ2/3x, λt) → HKPZ(x, t), (x, t) ∈ R× (0,∞) (1.16)

in the sense of convergence of finite-dimensional distributions as λ → ∞. Here HKPZ denotes the KPZ
fixed point with the narrow-wedge initial condition.

Remark 1.9. Both results can be extended to t = 0. In fact, using Proposition 1.5 (d), we have

1√
2λ

HUT
0

(
λ1/2x√

2
, 0

)
d
=

1√
2λ

(
Bts(

√
2λx)−

√
2λ|x|

)
→ −|x| = min{x,−x} (1.17)

and
λ−1/3HUT

0 (λ2/3x, 0)
d
= λ−1/3

(
Bts(2λ

2/3x)− 2λ2/3|x|
)
→ −∞1x ̸=0 = HKPZ(x, 0) (1.18)

as λ → ∞.

Remark 1.10. One can easily recover the 1 : 2 : 3 scaling invariance of the KPZ fixed point (with the
narrow-wedge initial condition) from (1.16). In fact, both HKPZ(x, t) and c−1/3HKPZ(c2/3x, ct) are the limits
of

(cλ)−1/3HUT((cλ)2/3x, cλt) = c−1/3 · λ−1/3HUT(λ2/3 · c2/3x, λ · ct)

as λ → ∞, hence they have the same finite-dimensional distributions.

We can also see that Proposition 1.8 is consistent with the known results (1.1) and (1.2). In fact, since
Brownian bridges locally behave like Brownian motions, we have

ϵ−1/2
(
B1(1 + ϵt) +

√
ϵx
)
, ϵ−1/2

(
B2(1 + ϵt)−

√
ϵx
)
, (1.19)

converges to B1(−t) + x,B2(−t)− x jointly on (x, t) ∈ R× (−∞, 0), as ϵ → 0. On the other hand, the KPZ
fixed point enjoys the 1 : 2 : 3 scaling invariance, hence

ϵ−1/2HKPZ(ϵx, ϵ3/2t)
d
= HKPZ(x, t) (1.20)

for (x, t) ∈ R× (0,∞). Thus, the fields HUT and HUT
0 provide the transition between (1.1) and (1.2).

The proof of Proposition 1.8 is given in Section 5.

The fields HUT and HUT
0 are new to our best knowledge. Since they are the limiting fields of the

KPZ fixed point near a conditioned high point, and the KPZ fixed point is expected to be universal in
the Kardar-Parisi-Zhang universality class, we expect HUT and HUT

0 are universal local limits for all the
models in the Kardar-Parisi-Zhang universality class near a conditioned high point. In an upcoming work,
we are planning to verify it for the totally asymmetric simple exclusion process, which is one of the simplest
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models in the Kardar-Parisi-Zhang universality class. It might be possible to verify the same limits for the
discrete polynuclear growth model, or equivalently, the discrete totally asymmetric simple exclusion process,
using the formulas in [Joh20, Liao22]. However, for other models, it would be more difficult to consider the
analogous upper tail limits due to the lack of exact formulas of the multipoint distribution of the height
function.

We conjecture that HUT and HUT
0 will also appear in the periodic KPZ fixed point conditioning on the

upper tail event. The heuristic reason is that the scaling window for the upper tail field is so small that the
periodicity might not be visable unless the period also shrink to the size of the scaling window. We leave
this verification as a future project.

Finally, by the same reason, we conjecture that HUT and HUT
0 do not depend on the initial condition.

Below we heuristically show the reason why the information of the initial condition would disappear in the
same scaling window for HUT and HUT

0 . If we change the narrow-wedge initial condition to the flat initial
condition, the limiting conditional random field of the KPZ fixed point before the conditioned high point
was also obtained in [LW24]. It turns out that the limiting field analogous to (1.1) is

min

{
B1(t) + x+

(1− t)Z√
2

,B2(t)− x− (1− t)Z√
2

}
, (x, t) ∈ R× (0, 1) (1.21)

where B1 and B2 are two independent Brownian bridges and Z is a standard normal random variable
independent of B1 and B2. Near t = 1 + ϵt ≈ 1,

ϵ−1/2

(
B1(1 + ϵt) +

√
ϵx− ϵ

tZ√
2

)
, ϵ−1/2

(
B2(1 + ϵt)−

√
ϵx + ϵ

tZ√
2

)
(1.22)

still converges to B1(−t)+x,B2(−t)−x jointly on R×(−∞, 0), as ϵ → 0. The impact of the initial condition
(which appears as an extra drift Z) disappears when we zoom in the field near t ≈ 1 from below with the
1 : 2 scaling. We conjecture that the same argument holds for a general initial condition. In other words, the
initial condition will not affect the limiting behaviors of the KPZ fixed point near the conditioned high point
(0, 1). More precisely, the limit is always min{B1(−t) + x,B2(−t) − x} when we zoom in the conditional
field near the conditioned point from below. Another observation is that at the point (0, 1), we have the
following asymptotics for any fixed β ≥ 0 and sufficiently large L,

P
(
HKPZ

flat (0, 1) ≥ L+ βL−1/2 | HKPZ
flat (0, 1) ≥ L

)
=

1− FGOE(2
2/3(L+ βL−1/2))

1− FGOE(22/3L)

≈ e−
2
3 (2

2/3(L+βL−1/2))3/2

e−
2
3 (2

2/3L)3/2

≈ e−2β

(1.23)

which is the same as the tail probability of HUT(0, 0). Here HKPZ
flat denotes the KPZ fixed point with the flat

initial condition and FGOE is the GOE Tracy-Widom distribution. We also used the right tail asymptotics

of FGOE: 1 − FGOE(L) ≈ 1
4
√
πL3/2 e

− 2
3L

3/2

as L → ∞. See [BBD08, Equations (25) and (26)] or [DV13] for

the right tail of the GOE Tracy-Widom distribution.
The above discussions suggest the following conjecture. Note that the assumption on the growth rate of

the initial condition is needed to ensure the existence of the KPZ fixed point at the point (0, 1).

Conjecture 1.11. Theorem 1.1 holds for the KPZ fixed point with a general initial condition which grows
sufficiently slower than the function f(x) = x2 when |x| becomes large, and the upper tail field of the KPZ
fixed point is independent of the initial condition.

1.3 Multipoint upper tail estimate of the KPZ fixed point

The proof of Theorem 1.1 relies on an upper tail estimate of the KPZ fixed point on a cluster of space-time
points near a given point. In order to introduce the result, we first define an order ≺ on R2.
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Definition 1.12. We say (α, τ) ≺ (α′, τ ′) for two points (α, τ), (α′, τ ′) ∈ R2, if either one of the following
two conditions are satisfied:

(i) τ < τ ′;

(ii) τ = τ ′ and α < α′.

Note that ≺ is a total order. Any two points on R2 are comparable by the order ≺ and there is a unique
way to arrange a set of distinct points on R2 by this order.

Now we introduce the multipoint upper tail estimate. For simplicity, we consider a cluster of points near
(0, 1). The general case can be deduced to this case using the same argument as in the Remark 1.4.

Define the following rescaled KPZ fixed point near (0, 1)

HL(α, τ) :=
√
L
(
HKPZ(αL−1, 1 + τL−3/2)− L

)
(1.24)

for (x, τ) ∈ R2 and L > 0 satisfying 1 + τL−3/2 > 0.

Proposition 1.13. Assume that (α1, τ1) ≺ · · · ≺ (αm, τm) are m points on the plane R2, and β =
(β1, · · · , βm) ∈ Rm. We have

16πL3/2e
4
3L

3/2

P

(
m⋂
ℓ=1

{HL(αℓ, τℓ) ≥ βℓ}

)
→ T(β; (α1, τ1), · · · , (αm, τm)) (1.25)

and

16πL3/2e
4
3L

3/2 ∂

∂βk
P

(
m⋂
ℓ=1

{HL(αℓ, τℓ) ≥ βℓ}

)
→ ∂

∂βk
T(β; (α1, τ1), · · · , (αm, τm)), 1 ≤ k ≤ m, (1.26)

as L → ∞. The function T is defined in Definition 2.2.

One special case is that when m = 1, T(β; (α, τ)) = e
2
3 τ−2β . The above result implies

P (HL(α, τ) ≥ β) ≈ e
2
3 τ−2β · e

− 4
3L

3/2

16πL3/2
(1.27)

as L → ∞. If we further assume that (α, τ) = (0, 0) and β = 0, this is the well known upper tail estimate
of the GUE Tracy-Widom distribution (see [TW94, BBD08] for example). Intuitively, the upper tail of the
KPZ fixed point at a set of points near (0, 1) should have the same leading order as the one point upper tail
at (0, 1), as long as the set of points are enough close to (0, 1) and the bounds of the heights are also enough
close. The Proposition 1.13 justifies this intuition and further provides the proper scaling under which each
point in the cluster affects the approximation in a nontrivial way.

The proof of Proposition 1.13 is given in Section 3.

1.4 Strategies and structure of the proofs

There are two main technical parts in the paper. The first one is an asymptotic analysis of the joint tail
probability function with the upper tail scaling. The asymptotics of the joint distribution function before
the conditioned hight point was performed in [LW24]. However, the analysis was only performed for distinct
times, while the case of equal times was handled using a probabilistic argument based on the continuity of
the limiting field since there was a difficulty analyzing the formula when times are equal. Another related
paper [NZ22] considered the asymptotics of the conditional distribution after the conditioned hight point.
However, only the one-point distribution function was analyzed due to the complexity of the formula. In this
paper, we did a finer analysis with a different scaling and the analysis works for the multipoint distribution
case with general space-time locations, including possibly equal times. Including the general space-time
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locations brings extra convergence issues of the integrals in the asymptotics analysis. We handled them by
using different types of contours on the two half planes (which breaks the symmetry of the formula) and
some careful estimate of the integrand along these contours. Another related analysis was performed for
the upper tail conditional limit of the periodic KPZ fixed point before the high point [BL24], which was
analogous to [LW24] and the asymptotic analysis was also limited to the case with distinct times.

The second main technical part is to show that the limit of the conditional joint tail probability functions,
the functions T̂, actually defines a nontrivial random field. We need to verify the consistency conditions of
the functions T̂ for applying the Kolmogorov extension theorem. The verification is nontrivial. We were
able to prove the consistency combing the techniques from the asymptotic analysis and some probabilistic
arguments.

Below is the structure of the paper.
In Section 2, we first define the function T, the limit of the multipoint tail function of the KPZ fixed

point in the upper tail scaling. In subsection 2.2, we use T to define the multipoint tail probability functions
T̂, and then in Proposition 2.5 we show that T̂ satisfy the consistency requirements for the Kolmogorov
extension theorem, hence they define a random field HUT. Part of the proof of Proposition 2.5 relies on a
tail estimate of the function T which is postponed in Subsection 2.3, see Proposition 2.9. Besides, we discuss
some properties the function T and the field HUT

0 = HUT −HUT(0, 0), such as the differentiability and the
changes of the formulas under a shift of parameters in Subsections 2.3 and 2.4.

Section 3 is the proof of Proposition 1.13 about the asymptotics of the multipoint tail probability function
with the upper tail scaling. We first prove a formula of the joint tail probability functions for the KPZ fixed
point, see Proposition 3.1. Then we provide the proof of Proposition 1.13 in Subsection 3.2. The technical
details involving the asymptotic analysis are postponed to Subsection 3.3.

In Section 4, we prove our main result, Theorem 1.1, using Proposition 1.13 and some properties of the
T function proved in Subsection 2.3.

Finally, in Section 5 and Section 6 we prove the properties of the fields HUT and HUT
0 listed in Proposition

1.8 and Proposition 1.5 respectively.
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2 The function T and the upper tail field HUT

2.1 Definition of T

The function T(β; (α1, τ1), · · · , (αm, τm)) is defined for β = (β1, · · · , βm) ∈ Rm and (α1, τ1), · · · (αm, τm) ∈
R2 satisfying (α1, τ1) ≺ · · · ≺ (αm, τm), where the order ≺ was defined in Definition 1.12.

When m ≥ 2, the definition involves a sum of contour integrals. There are 4(m− 1) contours appearing
in the definition. Let

Γin
m,L, · · · ,Γin

2,L,Γ
out
2,L, · · · ,Γout

m,L (2.1)

be 2m−2 contours, ordered from left to right, on the left half plane {u : Re(u) < 0}, each of which goes from
∞e−i2π/3 to ∞ei2π/3. Moreover, the point −1 lies between the two contours Γin

2,L and Γout
2,L. We similarly let

Γin
m,R, · · · ,Γin

2,R,Γ
out
2,R, · · · ,Γout

m,R (2.2)

be 2m − 2 contours, ordered from right to left, on the right half plane {v : Re(v) > 0}, each of which goes
from ∞e−iπ/5 to ∞eiπ/5. Moreover, the point 1 lies between the two contours Γin

2,R and Γout
2,R. The symbols L

and R appearing in the subscripts of these contours indicate whether the contour lies on the left half plane
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Re

Im

−1 1

Γin
3,L Γin

2,L Γout
2,L Γout

3,L

Γin
3,RΓin

2,RΓout
2,RΓout

3,R

Figure 1: Illustration of the Γ-contours in the definition of T when m = 3.

or the right half plane. The symbols in and out appearing in the superscripts indicate the relative locations
of these contours to infinity (−∞ for the contours on the left half plane and ∞ for those on the right half
plane). The angles of these contours are chosen to guarantee the convergence of the integrals along these
contours in the definition. Especially, we would like to point out that when the times are strictly ordered
τ1 < τ2 < · · · < τm, the angles of the right contours could be chosen to be the ±π/3. However, to ensure
the formula is still valid for the case of possible points with an equal time, we need to bend the contours on
one side (the side depends on how one chooses the order of the spatial parameters). See [Liu22a] for more
discussions on this issue.

See Figure 1 for an illustration of the contours when m = 3.
We also introduce some notations below.
Assume W = (w1, · · · , wn) ∈ Cn is a vector, we denote

aW + b = (aw1 + b, · · · , awn + b) ∈ Cn (2.3)

for any a, b ∈ C. We also denote the concatenation of two vectors W = (w1, · · · , wn) ∈ Cn and W ′ =
(w′

1, · · · , w′
n′) ∈ Cn′

W ⊔W ′ := (w1, · · · , wn, w
′
1, · · · , w′

n′) ∈ Cn+n′
. (2.4)

Especially, when n′ = 0 we write W ⊔ ∅ = W , and when n′ = 1, we write, for w′ ∈ C,

W ⊔ w′ = (w1, · · · , wn, w
′), and w′ ⊔W = (w′, w1, · · · , wn). (2.5)

If W = (w1, · · · , wn) ∈ Cn and W̃ = (w̃1, · · · , w̃n) ∈ Cn satisfying wi ̸= w̃j for all 1 ≤ i, j ≤ n, denote
the Cauchy determinant

C(W ; W̃ ) = det

[
1

wi − w̃j

]n
i,j=1

= (−1)n(n−1)/2

∏
1≤i<j≤n(wj − wj)(w̃j − w̃i)∏

1≤i,j≤n(wi − w̃j)
. (2.6)

Note that the dimensions of W and W̃ need to match in the above Cauchy determinant. A simple calculation
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also implies

C(W ⊔W ′; W̃ ⊔ W̃ ′) = det



...
...

· · · 1
wi−w̃j

· · · 1
wi−w̃′

j′
· · ·

...
...

· · · 1
w′

i′−w̃j
· · · 1

w′
i′−w̃′

j′
· · ·

...
...


1≤i,j≤n

1≤i′,j′≤n′

= C(W ; W̃ )C(W ′; W̃ ′) ·
n∏

i=1

n′∏
i′=1

(wi − w′
i′)(w̃i − w̃′

i′)

(wi − w̃′
i′)(w̃i − w′

i′)

(2.7)

for any W = (11, · · · , wn), W̃ = (w̃1, · · · , w̃n) ∈ Cn, W ′ = (w′
1, · · · , w′

n′), W̃ ′ = (w̃′
1, · · · , w̃′

n′) ∈ Cn′
satisfy-

ing wi ̸= w̃j , w
′
i′ ̸= w̃j , wi ̸= w̃′

j′ , and w′
i′ ̸= w̃′

j′ for all 1 ≤ i, j ≤ n and 1 ≤ i′, j′ ≤ n′.
For the Cauchy determinant, we have a very simple inequality, which we state in Lemma 2.1 below.

Before we state the inequality, we introduce a notation. For two sets A,B ⊂ C, denote

dist(A;B) := inf{|a− b| : a ∈ A, b ∈ B}. (2.8)

For simplification we also use the same notation for the distance of the coordinates in two vectors

dist(W ;W ′) = min{|wi − w′
i′ | : 1 ≤ i ≤ n, 1 ≤ i′ ≤ n′} (2.9)

for any vectors W = (w1, · · · , wn) ∈ Cn and W ′ = (w′
1, · · · , w′

n′) ∈ Cn′
. Note this is not the usual distance

of two vectors. For example, this function dist(W,W ′) is invariant under permutations of the coordinates of
W or W ′.

Lemma 2.1. Assume the two vectors W = (w1, · · · , wn), W̃ = (w̃1, · · · , w̃n) ∈ Cn satisfy dist(W ; W̃ ) > 0,
then

|C(W ;W ′)| ≤ nn/2dist(W ; W̃ )−n. (2.10)

If we further have W ′ = (w′
1, · · · , w′

n′), W̃ ′ = (w̃′
1, · · · , w̃′

n′) ∈ Cn′
satisfying dist(W ⊔W ′; W̃ ⊔W̃ ′) > 0, then

|C(W ⊔W ′; W̃ ⊔ W̃ ′)| ≤ nn/2(n′)n
′/22(n+n′)/2dist(W ⊔W ′; W̃ ⊔ W̃ ′)−n−n′

. (2.11)

Proof of Lemma 2.1. The first inequality follows from the Hadamard’s inequality

|C(W ;W ′)| =

∣∣∣∣∣det
(

1

wi − w̃j

)n

i,j=1

∣∣∣∣∣ ≤
n∏

j=1

√√√√ n∑
i=1

|wi − w̃j |−2 ≤
(
n · dist(W ; W̃ )−2

)n/2
. (2.12)

The second inequality follows from the first inequality and the following simple inequality(
n+ n′

2

)(n+n′)/2

≤ nn/2(n′)n
′/2 (2.13)

since the function x lnx is a convex function on (0,∞).

Finally, for fixed β = (β1, · · · , βm) and (αℓ, τℓ), 1 ≤ ℓ ≤ m, we introduce the function

fℓ(w) = fℓ(w;β; (α1, τ1), · · · , (αm, τm)) :=

{
e−

1
3 τ1w

3+α1w
2+β1w, ℓ = 1,

e−
1
3 (τℓ−τℓ−1)w

3+(αℓ−αℓ−1)w
2+(βℓ−βℓ−1)w, 2 ≤ ℓ ≤ m.

(2.14)
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It is direct to see that if ℓ ≥ 2 and (αℓ−1, τℓ−1) ≺ (αℓ, τℓ), then fℓ(w) decays super-exponentially fast to
0 as w → ∞ along the directions e±i2π/3. In fact, the real part of the exponent of fℓ is approximately
− 1

3 (τℓ− τℓ−1)Re(w
3) if τℓ−1 < τℓ, or (αℓ−αℓ−1)Re(w

2) if τℓ−1 = τℓ and αℓ−1 < αℓ when w grows to infinity

along the directions e±i2π/3. In both cases, the real part goes to −∞ (at a rate of |w|3 or |w|2). Thus
fℓ(w) decays super-exponentially fast to 0 along these two directions. Similarly, when ℓ ≥ 2 the function
fℓ(w) grows super-exponentially fast to ∞ as w → ∞ along the directions e±iπ/5, i.e., 1/fℓ(w) decays
super-exponentially fast to 0 along the directions e±iπ/5.

Now we are ready to define T(β; (α1, τ1), · · · , (αm, τm)).

Definition 2.2 (Definition of T). Assume that β = (β1, · · · , βm) ∈ Rm, and the m points (αℓ, τℓ) ∈ R2,
1 ≤ ℓ ≤ m, satisfy (α1, τ1) ≺ · · · ≺ (αm, τm). z = (z1, · · · , zm−1) is a vector in (C \ {0, 1})m−1 if m ≥ 2.

(i) If m = 1, we define

T(β1; (α1, τ1)) = e
2
3 τ1−2β1 . (2.15)

(ii) If m ≥ 2, we define

T(β; (α1, τ1), · · · , (αm, τm))

= (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

2≤ℓ≤m

1

(n2! · · ·nm−1!)2
Kn(β; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

(2.16)

where n = (n1 = 1, n2, · · · , nm), z = (z1, · · · , zm−1),
∮
>1

denotes the integral around a counterclockwise
oriented circle with radius larger than 1 and centered at the origin,

Kn(β; z) = Kn(β; z; (α1, τ1), · · · , (αm, τm))

= 2

m−1∏
ℓ=1

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1 ·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,L

du
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,L

du
(ℓ)
iℓ

2πi

)

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,R

dv
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,R

dv
(ℓ)
iℓ

2πi

)
m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)

· C(−1 ⊔ V (2); 1 ⊔ U (2)) ·
m−1∏
ℓ=2

C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)) · C(U (m);V (m))

(2.17)

and the vectors U (ℓ) = (u
(ℓ)
1 , · · · , u(ℓ)

nℓ ), V
(ℓ) = (v

(ℓ)
1 , · · · , v(ℓ)nℓ ) for each 2 ≤ ℓ ≤ m. The functions fℓ,

1 ≤ ℓ ≤ m, are defined in (2.14).

We first note that the case when m = 1, the function T(β1; (α1, τ1)) equals to −2C(−1; 1)f1(−1)/f1(1)
which can be viewed as the degenerated form of (2.16) if we set all the empty product to be 1 and set
U (2) = V (2) = ∅ in (2.17).

It is also easy to see that when m ≥ 2, all the terms Kn(β; z) are well defined since the integrand
decays super-exponentially fast along the integration contours due to the factors of the fℓ functions, see the
discussions after (2.14).

We also need to verify that the integrals and summations in (2.16) are well defined. In fact, note that
(2.17) is independent of the specific choices of the Γ-contours (as long as they satisfy the nesting assumption
and have the desired angles approaching to infinity described at the beginning of this subsection). We could
select these integral contours such that the distance between any two contours and the distance between any
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contour to {1,−1} are at least d > 0. Then we apply Lemma 2.1 and obtain

|Kn(z;β)|

≤ 2

∣∣∣∣f1(−1)

f1(1)

∣∣∣∣ · m∏
ℓ=2

(1 + |zℓ−1|)2nℓ

|zℓ−1|nℓ |1− zℓ−1|nℓ−nℓ−1
· 2 1

2+
∑m

ℓ=2 nℓ ·
∏m

ℓ=2 n
nℓ

ℓ

d1+2
∑m

ℓ=2nℓ

·
m∏
ℓ=2

∣∣∣∣∣
∫
Γin
ℓ,L∪Γout

ℓ,L

|fℓ+1(u)|
|du|
2π

∫
Γin
ℓ,R∪Γout

ℓ,R

1

|fℓ+1(v)|
|dv|
2π

∣∣∣∣∣
nℓ

≤
m∏
ℓ=2

(1 + |zℓ−1|)2nℓ

|zℓ−1|nℓ |1− zℓ−1|nℓ−nℓ−1
C

∑m
ℓ=2 nℓ

m∏
ℓ=2

nnℓ

ℓ

(2.18)

when m ≥ 2, where C is a constant independent of n and z, and we used the fact that the functions fℓ(w)
decays super-exponentially fast along the left contours and grows super-exponentially fast along the right
contours as w → ∞ and hence each integral in the middle of the above inequality is finite. Thus, we see that
the right hand sides of (2.16) is absolutely convergent, and the function T is well defined.

Finally, we remark that the z1 integral in (2.16) actually can be evaluated explicitly. In fact, noting
(2.17), the z1 integral is (after we suppress other terms independent of z1 in the · · · part)∮

>1

(1− z1)(1− z−1
1 )n2

n2∏
i2=1

(
1

1− z1

∫
Γin
2,L

du
(2)
i2

2πi
− z1

1− z1

∫
Γout
2,L

du
(2)
i2

2πi

)
n2∏

i2=1

(
1

1− z1

∫
Γin
2,R

du
(2)
i2

2πi
− z1

1− z1

∫
Γout
2,R

dv
(2)
i2

2πi

)
· · · dz1

2πiz1(1− z1)
.

(2.19)

If we deform the z1 contour to infinity, we see that any term involving
∫
Γin
2,L

or
∫
Γin
2,R

vanishes, and we end

with, after integrating z1,
n2∏

i2=1

∫
Γout
2,L

du
(2)
i2

2πi

∫
Γout
2,R

dv
(2)
i2

2πi
· · · (2.20)

Therefore, we obtain the following result.

Proposition 2.3. When m ≥ 2, we have the following formula for T(β; (α1, τ1), · · · , (αm, τm)).

T(β; (α1, τ1), · · · , (αm, τm)) = (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

2≤ℓ≤m

1

(n2! · · ·nm−1!)2
K̃n(β; z̃)

m−1∏
ℓ=2

dzℓ
2πizℓ(1− zℓ)

, (2.21)

where z̃ = (z2, · · · , zm−1), and

K̃n(β; z̃)

= 2

m−1∏
ℓ=2

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1 ·
m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,L

du
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,L

du
(ℓ)
iℓ

2πi

)
n2∏

i2=1

∫
Γout
2,L

du
(2)
i2

2πi

m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,R

dv
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,R

dv
(ℓ)
iℓ

2πi

)
n2∏

i2=1

∫
Γout
2,R

dv
(2)
i2

2πi
·

m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)

· C(−1 ⊔ V (2); 1 ⊔ U (2)) ·
m−1∏
ℓ=2

C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)) · C(U (m);V (m)).

(2.22)
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We could have used this formula as the definition of T function. The reason we prefer the formula (2.16)
in the definition is that the structure of (2.16) is more symmetric and aligns better with the pre-limit formula
of the KPZ fixed point.

2.2 Definition of the upper tail field HUT

Now we are ready to define the upper tail field HUT using the Kolmogorov extension theorem and its joint
tail probability functions. We denote

T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) = P

(
m⋂
ℓ=1

{
HUT(αℓ, τℓ) ≥ βℓ

})
(2.23)

for any m ≥ 1, and m distinct points (α1, τ1), · · · , (αm, τm) ∈ R2 and β1, · · · , βm ∈ R. The function T̂ is
explicitly given below.

Definition 2.4. Let m ≥ 1. Assume (α1, τ1), · · · , (αm, τm) are m distinct points on R2, and β1, · · · , βm ∈ R.

(i) If (α1, τ1) ≺ (α2, τ2) ≺ · · · ≺ (αm, τm), and (αk, τk) = (0, 0) for some 1 ≤ k ≤ m, then

T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))

= T(β1, · · · , βk−1,max{βk, 0}, βk+1, · · · , βm; (α1, τ1), · · · , (αm, τm)).
(2.24)

(ii) If (α1, τ1) ≺ · · · ≺ (αk−1, τk−1) ≺ (0, 0) ≺ (αk, τk) ≺ · · · ≺ (αm, τm) for some 1 ≤ k ≤ m+ 1, then

T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))

= T(β1, · · · , βk−1, 0, βk, · · · , βm; (α1, τ1), · · · , (αk−1, τk−1), (0, 0), (αk, τk), · · · , (αm, τm)).
(2.25)

(iii) More generally, assume that the points (α1, τ1), · · · , (αm, τm) are not necessarily ordered, and σ ∈ Sm

is the unique permutation such that (ασ1
, τσ1

) ≺ · · · ≺ (ασm
, τσm

), then

T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) = T̂(βσ1 , · · · , βσm ; (ασ1 , τσ1), · · · , (ασm , τσm)) (2.26)

where the right hand side is defined in the previous two cases.

Recall that ≺ is a total order defined in Definition 1.12. Thus, Definition 2.4 gives the joint tail probability
functions of HUT for arbitrarily ordered points. We also note a special case when m = 1 and (α1, τ1) = (0, 0),
we have (recalling Definition 2.2)

T̂(β; (0, 0)) = P
(
HUT(0, 0) ≥ β

)
= e−2max{β,0}. (2.27)

Moreover, T̂ has the following property by the equation (2.67) which will be proved later,

T̂(β; (α, τ)) = e
2
3 τ−2βT̂(−β; (−α,−τ)), if (0, 0) ≺ (α, τ). (2.28)

We still need to verify that (2.23) actually defines a random field by checking the joint tail probability
functions satisfy the consistency conditions so that the Kolmogorov extension theorem applies. Note that
the Kolmogorov extension theorem works for the joint tail probability functions in the same way as for the
joint cumulative distribution functions, since the joint tail probability functions of the field HUT are the
same as the joint cumulative distribution functions of −HUT. The consistency of the joint probability tail
functions is proved in the following proposition. We note that the proof relies on Proposition 1.13 and the
first part of Theorem 1.1. They imply (also see (4.1))

lim
L→∞

P

(
m⋂
ℓ=1

{HL(αℓ, τℓ) ≥ βℓ} | HL(0, 0) ≥ 0

)
= T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) (2.29)
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for any βk ∈ R, 1 ≤ k ≤ m, as long as (αk, τk), 1 ≤ k ≤ m, are distinct points on R2, where HL is the
rescaled KPZ fixed point HL(α, τ) :=

√
L
(
HKPZ(αL−1, 1 + τL−3/2)− L

)
as defined in (1.24). We emphasize

that the proofs of Proposition 1.13 and the first part of Theorem 1.1, including (2.29), does not depend on
the existence of the random field HUT but only uses the explicit formulas of HL and T.

Proposition 2.5. The function T̂ has the following properties.

(a) T̂(β; (α, τ)) is a tail probability function for each (α, τ) ∈ R2, i.e.,

lim
β→−∞

T̂(β; (α, τ)) = 1, lim
β→∞

T̂(β; (α, τ)) = 0. (2.30)

(b) For m ≥ 2, we have
lim

βk→∞
T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) = 0 (2.31)

and

lim
βk→−∞

T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))

= T̂(β1, · · · , βk−1, βk+1, · · · , βm; (α1, τ1), · · · , (αk−1, τk−1), (αk+1, τk+1), · · · , (αm, τm))
(2.32)

for all 1 ≤ k ≤ m.

Proof of Proposition 2.5. We first prove (b) using (a), then prove (a).
Assume Proposition 2.5 (a) holds. Note that (2.29) implies

T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) ≤ T̂(βk; (αk, τk)). (2.33)

Combining with (a) we immediately obtain (2.31).
On the other hand, (2.29) also implies

0 ≤T̂(β1, · · · , βk−1, βk+1, · · · , βm; (α1, τ1), · · · , (αk−1, τk−1), (αk−1, τk−1), · · · , (αm, τm))

− T̂(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))

= lim
L→∞

P

⋂
ℓ ̸=k

{HL(αℓ, τℓ) ≥ βℓ}
⋂

{HL(αk, τk) < βk} | HL(0, 0) ≥ 0


≤ lim

L→∞
P (HL(αk, τk) < βk | HL(0, 0) ≥ 0)

=1− T̂(βk; (αk, τk)).

(2.34)

Combining with (a) we have (2.32).

It remains to show Proposition 2.5 (a). The large β limit is easier. We use (2.29) and obtain

T̂(β; (α, τ)) = lim
L→∞

P (HL(α, τ) ≥ β | HL(0, 0) ≥ 0) ≤ lim
L→∞

P (HL(α, τ) ≥ β)

P (HL(0, 0) ≥ 0)
= e

2
3 τ−2β (2.35)

where we used the asymptotics (1.27) in the last equation. The above inequality implies that

lim
β→∞

T̂(β; (α, τ)) = 0. (2.36)

The other limit when β → −∞ is more complicated. We consider four different cases.
Case 1: α = τ = 0. In this case by (2.27) we have T̂(β; (0, 0)) = e−2max{β,0} which is 1 when β < 0.
Case 2: τ > 0. We need an inequality in the notation of the directed landscape [DOV22]. The directed

landscape L(y, s;x, t), 0 < s < t, x, y ∈ R, is a “random metric” which has the following relation to the KPZ
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fixed point L(0, 0;x, t) d
= HKPZ(x, t), where

d
= means an equation in law. It also has the following triangle

inequality
L(0, 0;x, t) ≥ L(0, 0; y, s) + L(y, s;x, t) (2.37)

for any s < t and x, y ∈ R. Moreover, L(0, 0; y, s), and L(y, s;x, t) are independent. Finally, the one point
distribution of L(y, s;x, t) is given by the GUE Tracy-Widom distribution

P (L(y, s;x, t) ≤ h) = FGUE

(
h

(t− s)1/3
+

(x− y)2

(t− s)4/3

)
. (2.38)

Using the language of the directed landscape, we have, for any τ1 < τ2,

P (HL(α1, τ1) ≥ β1,HL(α2, τ2) < β2)

= P
(
HKPZ(α1L

−1, 1 + τ1L
−3/2) ≥ L+ β1L

−1/2,HKPZ(α2L
−1, 1 + τ2L

−3/2) < L+ β2L
−1/2

)
≤ P

(
L(0, 0;α1L

−1, 1 + τ1L
−3/2) ≥ L+ β1L

−1/2

L(α1L
−1, 1 + τ1L

−3/2;α2L
−1, 1 + τ2L

−3/2) < (β2 − β1)L
−1/2

)
= P (HL(α1, τ1) ≥ β1) · FGUE

(
β2 − β1

(τ2 − τ1)1/3
+

(α2 − α1)
2

(τ2 − τ1)4/3

)
.

(2.39)

As a special case we have

P (HL(0, 0) ≥ 0,HL(α, τ) < β) ≤ P (HL(0, 0) ≥ 0) · FGUE

(
β

τ1/3
+

α2

τ4/3

)
(2.40)

when τ > 0, and hence

P (HL(α, τ) < β | HL(0, 0) ≥ 0) ≤ FGUE

(
β

τ1/3
+

α2

τ4/3

)
. (2.41)

By taking L → ∞ and applying (2.29), we get

1− FGUE

(
β

τ1/3
+

α2

τ4/3

)
≤ T̂(β; (α, τ)) ≤ 1. (2.42)

We further take β → −∞ and obtain the desired limit limβ→−∞ T̂(β; (α, τ)) = 1.
Case 3: τ < 0. Note in this case we have, using Definition 2.4,

T̂(β; (α, τ)) = T(β, 0; (α, τ), (0, 0)) (2.43)

which goes to 1 as β → −∞ by Proposition 2.9 which will be proved in the next subsection as a property of
the function T.

Case 4: τ = 0 and α ̸= 0. We first apply (2.39) and obtain

P (HL(α, 0) < β,HL(α,−1) ≥ β/2) ≤ P (HL(α,−1) ≥ β/2) FGUE (β/2) . (2.44)

By taking L → ∞ and applying (1.27), we have

lim
L→∞

P (HL(α, 0) < β,HL(α,−1) ≥ β/2)

P (HL(0, 0) ≥ 0)
≤ e−

2
3−βFGUE (β/2) . (2.45)

This further implies

lim
L→∞

P (HL(α, 0) < β,HL(α,−1) ≥ β/2 | HL(0, 0) ≥ 0) ≤ e−
2
3−βFGUE (β/2) → 0 (2.46)
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as β → −∞, where we used the left tail estimate of the GUE Tracy-Widom distribution FGUE(β) ≈
e−( 1

24+o(1))|β|3 , see [BBD08]. On the other hand, the third case above implies

lim
β→−∞

lim
L→∞

P (HL(α,−1) < β/2 | HL(0, 0) ≥ 0) = lim
β→−∞

(1− T̂(β/2; (α,−1))) = 0. (2.47)

Finally we also note that

P (HL(α, 0) < β | HL(0, 0) ≥ 0)

≤ P (HL(α, 0) < β,HL(α,−1) ≥ β/2 | HL(0, 0) ≥ 0) + P (HL(α,−1) < β/2 | HL(0, 0) ≥ 0) .
(2.48)

Combining the above argument, we obtain limβ→−∞ limL→∞ P (HL(α, 0) < β | HL(0, 0) ≥ 0) = 0, which

implies limβ→−∞ T̂(β; (α, 0)) = 1. This completes the proof.

2.3 Some properties of T

In this subsection, we discuss several properties of the function T.
We first note that the parameters βℓ, αℓ, τℓ, 1 ≤ ℓ ≤ m, only appear in the functions fℓ in the definition of

T, and these functions are exponential functions which are differentiable arbitrarily many times with respect
to the parameters. One might wonder whether this property passes to the function T. This actually is true,
and we state it in Proposition 2.7. It follows from the following lemma about the change of the order of
integral/summation and the differentiation.

Lemma 2.6. Suppose µ is a complex measure on a space Ω, and x ∈ R is a fixed number. If∫
Ω

∣∣∣F (W )eyg(W )
∣∣∣ |dµ(W )| < ∞,

∫
Ω

∣∣∣F (W )g(W )eyg(W )
∣∣∣ |dµ(W )| < ∞ (2.49)

for y ∈ (x− δ, x+ δ) for some δ > 0, then

d

dy

∣∣∣∣∣
y=x

∫
Ω

F (W )eyg(W )dµ(W ) =

∫
Ω

F (W )g(W )exg(W )dµ(W ). (2.50)

Proof of Lemma 2.6. We need the following simple inequality∣∣∣∣ew − 1

w

∣∣∣∣ ≤ e · (|ew|+ 1), w ∈ C. (2.51)

Now assuming this inequality holds, we prove the lemma. We write

d

dy

∣∣∣∣∣
y=x

∫
Ω

F (W )eyg(W )dµ(W ) = lim
ϵ→0

∫
Ω

F (W )
e(x+ϵ)g(W ) − exg(W )

ϵ
dµ(W )

= lim
ϵ→0

∫
Ω

F (W )g(W )
e(x+ϵ)g(W ) − exg(W )

ϵg(W )
dµ(W ).

(2.52)

Note that for any ϵ ∈ (−δ/2, δ/2), we have, by using (2.51),∣∣∣∣e(x+ϵ)g(W ) − exg(W )

ϵg(W )

∣∣∣∣ ≤ e ·
∣∣∣exg(W )

∣∣∣ (|eϵg(W )|+ 1
)

≤ e ·
∣∣∣exg(W )

∣∣∣ (|e δ
2 g(W )|+ |e− δ

2 g(W )|+ 1
)
.

(2.53)

Moreover, the assumption in the lemma implies∫
Ω

|F (W )g(W )|e ·
∣∣∣exg(W )

∣∣∣ (|e δ
2 g(W )|+ |e− δ

2 g(W )|+ 1
)
|dµ(W )| < ∞. (2.54)
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Therefore the dominated convergence theorem applies on the right hand side of (2.52) and we can take the
differentiation within the integral. This proves the lemma.

It remains to prove (2.51). We prove it by considering two different cases. The first case is |w| ≥ 1. In
this case, we have ∣∣∣∣ew − 1

w

∣∣∣∣ ≤ |ew − 1| ≤ |ew|+ 1. (2.55)

The second case is that |w| ≤ 1. Note that (ew − 1)/w is analytic. Hence, its maximal norm within the disk
is obtained at the boundary∣∣∣∣ew − 1

w

∣∣∣∣ ≤ max
|w′|=1

∣∣∣∣∣ew
′ − 1

w′

∣∣∣∣∣ = max
|w′|=1

|ew
′
− 1| ≤ e+ 1 ≤ e+ |ew+1|. (2.56)

Combining the two cases we get the desired inequality.

A simple corollary of Lemma 2.6 is that we can take the derivatives with respect to the parameters
of T inside the summand and integrand, more explicitly, the derivatives can be taken to the function∏m

ℓ=2

∏nm

iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
which is the only part containing the parameters. Note the assumptions of Lemma

2.6 are satisfied as long as the parameters are within the interior of the domain {(α1, τ1) ≺ · · · ≺ (αm, τm)}.

Proposition 2.7 (Differentiability). The function T(β; (α1, τ1), · · · , (αm, τm)) is a smooth function on all
the parameters βℓ, αℓ, τℓ, 1 ≤ ℓ ≤ m, within the domain {(α1, τ1) ≺ · · · ≺ (αm, τm)}. Moreover, the
derivatives can be taken inside Kn in (2.16) when m ≥ 2. More explicitly, let D denote the differentiation
operator with respect to any of these parameters, and Dk denote the k-th differentiation which could be with
respect to different parameters, we have

DkT(β; (α1, τ1), · · · , (αm, τm))

= (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

2≤ℓ≤m

1

(n2! · · ·nm−1!)2
(
DkKn(β; z)

)m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

, (2.57)

where DkKn(β; z) has the same formula as for Kn(β; z) in (2.17), except that we need to replace the factor∏m
ℓ=2

∏nm

iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
by Dk

∏m
ℓ=2

∏nm

iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
in the integrand of (2.17).

The next property of T involves the shift of parameters. The functions fℓ have a nice invariance property
under the shift of parameters, which passes to the function T. This property is explicitly stated below.

Proposition 2.8 (Shift on parameters). Assume that β1, · · · , βm ∈ R, and (α1, τ1) ≺ · · · ≺ (αm, τm) are m
ordered points on R2. Then we have

T(β; (α1, τ1), · · · , (αm, τm)) = e
2
3 τ̂−2β̂T(β1 − β̂, · · · , βm − β̂; (α1 − α̂, τ1 − τ̂), · · · , (αm − α̂, τm − τ̂)) (2.58)

for any β̂, α̂, τ̂ ∈ R. Moreover, if Dk denotes the k-th differentiation which could be with respect to different
parameters among {α1, · · · , αm, β1, · · · , βm, τ1, · · · , τm}, then DkT has the same shift property as T. More
explicitly, if

T (β; (α1, τ1), · · · , (αm, τm)) = DkT(β; (α1, τ1), · · · , (αm, τm)), (2.59)

then

T (β; (α1, τ1), · · · , (αm, τm)) = e
2
3 τ̂−2β̂T (β1 − β̂, · · · , βm − β̂; (α1 − α̂, τ1 − τ̂), · · · , (αm − α̂, τm − τ̂)). (2.60)
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We remark that for the second part of this proposition, if we take

T (β; (α1, τ1), · · · , (αm, τm)) =
∂m

∂β1 · · · ∂βm
T(β; (α1, τ1), · · · , (αm, τm)), (2.61)

then we have

T (β; (α1, τ1), · · · , (αm, τm)) = e
2
3 τk−2βkT (β1 − βk, · · · , βm − βk; (α1 − αk, τ1 − τk), · · · , (αm − αk, τm − τk))

(2.62)
for any 1 ≤ k ≤ m.

Proof of Proposition 2.8. We first consider the proof of (2.58). It is a direct check when m = 1. For m ≥ 2,
note that the functions fℓ, 2 ≤ ℓ ≤ m, are invariant if we shift the parameters βℓ (or αℓ, τℓ), 1 ≤ ℓ ≤ m, by
the same constant. See the definition of fℓ in (2.14). Hence the shift of parameters only affects the function
f1 in (2.17) and we have

Kn(β − β̂; z; (α1 − α̂, τ1 − τ̂), · · · , (αm − α̂, τm − τ̂)) = e−
2
3 τ̂+2β̂Kn(β; z; (α1, τ1), · · · , (αm, τm)) (2.63)

where β = (β1, · · · , βm) and β− β̂ = (β1− β̂, · · · , βm− β̂). Inserting it to (2.16) we get the desired property.
The proof of (2.60) is similar. We apply Proposition 2.7 and the differentiation can be passed to the

exponential function

Dk
m∏
ℓ=2

nm∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
= H ·

m∏
ℓ=2

nm∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
(2.64)

where H is some function independent of the parameters αℓ, βℓ and τℓ, 1 ≤ ℓ ≤ m. Thus the above expression
has the same shift property as that without the differentiation. (2.60) follows immediately.

Finally we are interested in the tail behavior of the function T. Whenm = 1, T is an exponential function.
When m = 2, we will see that T has some nontrivial tail behaviors. We can assume that α1 = β1 = τ1 = 0
or α2 = β2 = τ2 = 0 by the Proposition 2.8.

Proposition 2.9. Assume that τ > 0 and α ∈ R are both fixed. Then we have

T(0, β; (0, 0), (α, τ))− e
2
3 τ−2β

=


− τ3/4√

πβ5/4
e
− 2

3

(
β+α2

τ

)3/2

τ1/2
+|α|

(
β
τ −1+ 2α2

3τ2

)
+ 1

3 τ−β ·
(
1 +O(β−3/4)

)
, α ̸= 0,

− 2τ3/4√
πβ5/4

e
− 2

3
β3/2

τ1/2
+ 1

3 τ−β ·
(
1 +O(β−3/4)

)
, α = 0,

(2.65)

and

T(−β, 0; (−α,−τ), (0, 0))− 1

=


− τ3/4√

πβ5/4
e
− 2

3

(
β+α2

τ

)3/2

τ1/2
+|α|

(
β
τ −1+ 2α2

3τ2

)
− 1

3 τ+β ·
(
1 +O(β−3/4)

)
, α ̸= 0,

− 2τ3/4√
πβ5/4

e
− 2

3
β3/2

τ1/2
− 1

3 τ+β ·
(
1 +O(β−3/4)

)
, α = 0,

(2.66)

when β → ∞.
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Proof of Proposition 2.9. Note that the shift property in Proposition 2.8 implies that

T(−β, 0; (−α,−τ), (0, 0)) = e−
2
3 τ+2βT(0, β; (0, 0), (α, τ)), for any (0, 0) ≺ (α, τ). (2.67)

Hence the two formulas (2.65) and (2.66) are equivalent. Below we only show (2.65).
We apply Proposition 2.3 and write

T(0, β; (0, 0), (α, τ))

=
∑
n≥1

1

(n!)2

n∏
i=1

∫
Γout
2,L

dui

2πi

∫
Γout
2,R

dvi
2πi

2C(−1 ⊔ V ; 1 ⊔ U)C(U ;V )

n∏
i=1

f2(ui)

f2(vi)

=
∑
n≥1

(−1)n+1

(n!)2

n∏
i=1

∫
Γout
2,L

dui

2πi

∫
Γout
2,R

dvi
2πi

∏
1≤i<j≤n(ui − uj)

2(vi − vj)
2∏

1≤i,j≤n(ui − vj)2

n∏
i=1

(ui − 1)(vi + 1)

(ui + 1)(vi − 1)

n∏
i=1

f2(ui)

f2(vi)

(2.68)

where U = (u1, · · · , un) and V = (v1, · · · , vn) and we applied the Cauchy determinant formula (2.6) in the

second equation. The function f2(w) = e−
τ
3w

3+αw2+βw as defined in (2.14).
Now we deform the contours Γout

2,L and Γout
2,R to Γin

2,L and Γin
2,R respectively. Note that the ui-contour passes

the pole −1 and the vi-contour passes the pole 1 during the deformation. Hence the deformation can be
expressed as ∫

Γout
2,L

· · · dui

2πi
=

∫
Γin
2,L

· · · dui

2πi
+ Res(· · · ;ui = −1) (2.69)

where · · · is the suppressed integrand for simplification and Res(f ; z = a) is the residue of f at the point a

Res(f ; z = a) =

∮
a

f(z)
dz

2πi
, (2.70)

and similarly ∫
Γout
2,R

· · · dvi
2πi

=

∫
Γin
2,R

· · · dvi
2πi

− Res(· · · ; vi = 1), (2.71)

here we have the − sign in front of the residue since the orientation of the contours Γout
2,R and Γin

2,R are from

∞e−i2π/5 to ∞ei2π/5. See the beginning of Section 2.1. Note the factor
∏

1≤i<j≤n(ui − uj)
2(vi − vj)

2. So
if two deformations on the left contours end at evaluating the residue, say at ui = 1 and uj = 1, then the
integrand vanishes. Similarly we at most evaluate the residue at 1 once when we deform the right contours.
Also note the integrand is symmetric in u1, · · · , un and in v1, · · · , vn. We can write (2.68) as a sum of four
terms

T(0, β; (0, 0), (α, τ)) = T0 +T1 +T−1 +T2 (2.72)

where T0 is the term obtained without evaluating any residues

T0 =
∑
n≥1

(−1)n+1

(n!)2

n∏
i=1

∫
Γin
2,L

dui

2πi

∫
Γin
2,R

dvi
2πi

∏
1≤i<j≤n(ui − uj)

2(vi − vj)
2∏

1≤i,j≤n(ui − vj)2

n∏
i=1

(ui − 1)(vi + 1)

(ui + 1)(vi − 1)

n∏
i=1

f2(ui)

f2(vi)
,

(2.73)
T1 is the term with one vi integral converted to the residue at 1. There are n such terms and by symmetry
we assume vn-integral becomes the residue at vn = 1. After simplification, we have

T1 = 2e
1
3 τ−α−β

∑
n≥1

(−1)n

((n− 1)!)2n

n∏
i=1

∫
Γin
2,L

dui

2πi

n−1∏
j=1

∫
Γin
2,R

dvj
2πi∏

1≤i<j≤n(ui − uj)
2
∏

1≤i<j≤n−1(vi − vj)
2∏

1≤i≤n

∏
1≤j≤n−1(ui − vj)2

·
∏n−1

j=1 (vj − 1)(vj + 1)∏n
i=1(ui − 1)(ui + 1)

·
∏n

i=1 f2(ui)∏n−1
j=1 f2(vj)

.

(2.74)
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Similarly, T−1 is the term with one ui integral converted to the residue at −1

T−1 = 2e
1
3 τ+α−β

∑
n≥1

(−1)n

((n− 1)!)2n

n−1∏
i=1

∫
Γin
2,L

dui

2πi

n∏
j=1

∫
Γin
2,R

dvj
2πi∏

1≤i<j≤n−1(ui − uj)
2
∏

1≤i<j≤n(vi − vj)
2∏

1≤i≤n−1

∏
1≤j≤n(ui − vj)2

·
∏n−1

i=1 (ui − 1)(ui + 1)∏n
j=1(vj − 1)(vj + 1)

·
∏n−1

i=1 f2(ui)∏n
j=1 f2(vj)

.

(2.75)

And finally, T2 is the term with one ui integral converted to the residue at −1 and one vj integral converted
to the residue at 1

T2 = −e
2
3 τ−2β

∑
n≥1

(−1)n

((n− 1)!)2

n−1∏
i=1

∫
Γin
2,L

dui

2πi

n−1∏
j=1

∫
Γin
2,R

dvj
2πi∏

1≤i<j≤n−1(ui − uj)
2
∏

1≤i<j≤n−1(vi − vj)
2∏

1≤i≤n−1

∏
1≤j≤n−1(ui − vj)2

·
n−1∏
i=1

(vi − 1)(ui + 1)

(ui − 1)(vi + 1)
·
n−1∏
i=1

f2(ui)

f2(vi)
.

(2.76)

Now we apply the steepest descent analysis for each term as β becomes large. Recall that f2(w) =

e−
τ
3w

3+αw2+βw. Note that when α = 0 and τ = 1, the integral of f2(w) along the contour Γin
2,L is the

Airy function of β. It is a classical textbook exercise to analyze the asymptotics when β → ∞. The same
exercise (after a shift and rescale of the w variable) actually implies

∫
Γin
2,L

g(u)f2(u)
du

2πi
=

g(−
√

β/τ)

2
√
π(βτ)1/4

e
− 2

3

(
β+α2

τ

)3/2

τ1/2
+ 2

3
α3

τ2 +αβ
τ

(
1 +O(β−3/4)

)
(2.77)

when β → ∞ provided g(u) is an analytic function to the left of Γin
2,L independent of β and it at most grows

polynomially when u → ∞. Similarly,

∫
Γin
2,R

g(v)
1

f2(v)

dv

2πi
=

g(
√

β/τ)

2
√
π(βτ)1/4

e
− 2

3

(
β+α2

τ

)3/2

τ1/2
− 2

3
α3

τ2 −αβ
τ

(
1 +O(β−3/4)

)
(2.78)

when β → ∞ provided g(v) is an analytic function to the right of Γin
2,R independent of β and it at most grows

polynomially when v → ∞. Note that both expressions decay like e−
2
3β

3/2/τ1/2

which is super-exponentially
small when β becomes large. This implies that in the summations of Ti functions, i = 0,±1, 2, the leading
term comes from the term with the least number of integrals, i.e., the summand when n = 1. Inserting the
above asymptotics in the Ti functions when n = 1, we get

T0 = O

e
− 4

3

(
β+α2

τ

)3/2

τ1/2

 ,

T1 = − τ3/4√
πβ5/4

e
− 2

3

(
β+α2

τ

)3/2

τ1/2
+ 2

3
α3

τ2 +αβ
τ + 1

3 τ−α−β
(
1 +O(β−3/4)

)
,

T−1 = − τ3/4√
πβ5/4

e
− 2

3

(
β+α2

τ

)3/2

τ1/2
− 2

3
α3

τ2 −αβ
τ + 1

3 τ+α−β
(
1 +O(β−3/4)

)
,

T2 = e
2
3 τ−2β +O

e
− 4

3

(
β+α2

τ

)3/2

τ1/2

 .

(2.79)

Inserting these asymptotics to (2.72) we arrive at (2.65).
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2.4 Properties of HUT
0

Recall the random fieldHUT
0 (α, τ) = HUT(α, τ)−HUT(0, 0). We first prove that the fieldHUT

0 is independent
of HUT(0, 0). It follows from the following lemma and the fact that HUT has continuous tail probability
functions by the definition (thus the non-differentiability at β = 0 of the tail probability functions does not
affect the independence).

Lemma 2.10. Assume m ≥ k ≥ 1, and (α1, τ1) ≺ · · · ≺ (αk−1, τk−1) ≺ (0, 0) ≺ (αk, τk) ≺ · · · ≺ (αm, τm)
on the plane R2. The joint density function of HUT

0 (αℓ, τℓ) and HUT(0, 0) exists and is given by

(−1)m+1 ∂m+1

∂β1 · · · ∂βm∂β
P

(
m⋂
ℓ=1

{
HUT

0 (αℓ, τℓ) ≥ βk

}⋂{
HUT(0, 0) ≥ β

})
= Q1(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) ·Q2(β), β ̸= 0,

(2.80)

where Q1 is a function independent of β

Q1(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) =
1

2

(−1)m+1∂m+1

∂β1 · · · ∂βm∂β̂

∣∣∣∣∣
β̂=0

T(β1, · · · , βk−1, β̂, βk, · · · , βm;

(α1, τ1), · · · , (αk−1, τk−1), (0, 0), (αk, τk), · · · , (αm, τm)) (2.81)

and Q2 is given by

Q2(β) =

{
2e−2β , β > 0,

0, β < 0.
(2.82)

Proof. We first note that the function Q1 is well defined by Proposition 2.7.
In order to show (2.80), it is sufficient to show that, by the change of variables, the joint density function

of HUT(α1, τ1), · · · , HUT(αm, τm), and HUT(0, 0), exists and is given by

(−1)m+1 ∂m+1

∂β1 · · · ∂βm∂β
P

(
m⋂
ℓ=1

{
HUT(αℓ, τℓ) ≥ βk

}⋂{
HUT(0, 0) ≥ β

})
= Q1(β1 − β, · · · , βm − β; (α1, τ1), · · · , (αm, τm)) ·Q2(β)

(2.83)

when β ̸= 0. Note that when β < 0, the probability P
(⋂m

ℓ=1

{
HUT(αℓ, τℓ) ≥ βk

}⋂{
HUT(0, 0) ≥ β

})
is

independent of β by Definition 2.4, hence the left hand side of (2.83) is zero which matches its right hand
side. When β > 0, the left hand side of (2.83) equals to, by the definition 2.4,

(−1)m+1 ∂m+1

∂β1 · · · ∂βm∂β
T(β1, · · · , βk−1, β, βk, · · · , βm;

(α1, τ1), · · · , (αk−1, τk−1), (0, 0), (αk, τk), · · · , (αm, τm)). (2.84)

Note the definitions of Q1 and Q2. Thus (2.83) is a property of the shift of parameters of the derivative of
the function T, which follows from Proposition 2.8, or more explicitly the equations (2.61) and (2.62).

Remark 2.11. A simple corollary of this proposition is that the joint density function of HUT
0 (α1, τ1), · · · ,

HUT
0 (αm, τm) exists and is given by Q1 since Q2 is the density of HUT(0, 0).

Below we also provide a formula of the joint tail probability functions of HUT
0 .

Proposition 2.12. Let m ≥ 2. Assume that (α1, τ1) ≺ · · · ≺ (αm, τm) are m points satisfying (αk, τk) =
(0, 0) for some 1 ≤ k ≤ m, and β1, · · · , βk−1, βk+1, · · · , βm ∈ R are fixed. Then

P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{
HUT

0 (αℓ, τℓ) ≥ βℓ

} = −1

2

∂

∂βk

∣∣∣∣∣
βk=0

T(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)). (2.85)
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Proof of Proposition 2.12. Note that HUT
0 is independent of HUT(0, 0) as proved at the beginning of this

subsection. Thus

P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{
HUT

0 (αℓ, τℓ) ≥ βℓ

} = P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{
HUT

0 (αℓ, τℓ) ≥ βℓ

} ∣∣∣HUT(αk = 0, τk = 0) = β̂



= P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{
HUT(αℓ, τℓ) ≥ βℓ + β̂

} ∣∣∣HUT(αk = 0, τk = 0) = β̂


=

∂
∂βk

∣∣∣
βk=0

P
(⋂

1≤ℓ≤m

{
HUT(αℓ, τℓ) ≥ βℓ + β̂

})
∂

∂βk

∣∣∣
βk=0

P
(
HUT(0, 0) ≥ βk + β̂

)

(2.86)

for any β̂ > 0. Recall Definition 2.4. The denominator of the right hand side is given by

∂

∂βk

∣∣∣
βk=0

T(βk + β̂; (0, 0)) =
∂

∂βk

∣∣∣
βk=0

e−2(βk+β̂) = −2e−2β̂ (2.87)

and the numerator is, by Proposition 2.8,

∂

∂βk

∣∣∣
βk=0

T(β1 + β̂, · · · , βm + β̂; (α1, τ1), · · · , (αm, τm))

= e−2β̂ ∂

∂βk

∣∣∣
βk=0

T(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)).

(2.88)

Combing the two equations we complete the proof.

3 Proof of Proposition 1.13

3.1 Tail probability formula of the KPZ fixed point

The starting point of the proof is an explicit formula of the multipoint distribution functions of the KPZ
fixed point HKPZ(x, t), with the narrow-wedge initial condition. If t = t0 is fixed, the process HKPZ(x, t = t0)
is equivalent to a (rescaled) parabolic Airy2 process with finite-dimensional distribution functions expressed
as a Fredholm determinant with an extended Airy kernel, see [PS02, Joh03]. In this paper, we need the
finite-dimensional distribution functions of the full field HKPZ(x, t) in the space-time plane. While there
are no explicit formulas for a general initial condition so far, the finite-dimensional distribution functions of
HKPZ(x, t), the KPZ fixed point with the narrow-wedge initial condition, were recently obtained in [JR21]
and [Liu22a]. We will use a variation of the formula in [Liu22a] to prove Proposition 1.13. More precisely, we
will use a joint tail probability formula instead of the regular one proved in [Liu22a]. Such a tail probability
formula for the KPZ fixed point was not explicitly written before, although similar expressions of the same
nature have appeared in [LW24] and [BL24]. We state the formula in the following proposition, and include
its proof for completeness.

Proposition 3.1. Assume x = (x1, · · · , xm),h = (h1, · · · , hm) are two vectors in Rm and t = (t1, · · · , tm) ∈
Rm

+ . Moreover, the points (xℓ, tℓ), 1 ≤ ℓ ≤ m, are ordered in the half plane R × R+: (x1, t1) ≺ (x2, t2) ≺
· · · ≺ (xm, tm), where the relation ≺ is defined in the Definition 1.12. We have

P

(
m⋂
ℓ=1

{HKPZ(xℓ, tℓ) ≥ hℓ}

)
= (−1)m

∮
>1

· · ·
∮
>1

D(h; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

, (3.1)
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where

D(h; z) = D(h; z; (x1, t1), · · · , (xm, tm)) :=
∑
nℓ≥1

ℓ=1,··· ,m

1

(n1! · · ·nm!)2
Dn(z,h),

(3.2)

with

Dn(h; z) =Dn(h; z; (x1, t1), · · · , (xm, tm))

:=

m−1∏
ℓ=1

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Cin

ℓ,L

dξ
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Cout

ℓ,L

dξ
(ℓ)
iℓ

2πi

)
n1∏

i1=1

∫
C1,L

dξ
(1)
i1

2πi

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Cin

ℓ,R

dη
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Cout

ℓ,R

dη
(ℓ)
iℓ

2πi

)
n1∏

i1=1

∫
C1,R

dη
(1)
i1

2πi

C(η(1); ξ(1)) ·
m∏
ℓ=1

C(ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)) ·
m∏
ℓ=1

nℓ∏
iℓ=1

Fℓ(ξ
(ℓ)
iℓ

)

Fℓ(η
(ℓ)
iℓ

)

(3.3)

where the notations ξℓ = (ξ
(ℓ)
1 , · · · , ξ(ℓ)nℓ ) and ηℓ = (η

(ℓ)
1 , · · · , η(ℓ)nℓ ). We also set ξ(m+1) = η(m+1) = ∅. The

function C represents the Cauchy determinant defined in (2.6), and the functions

Fℓ(ζ) = Fℓ(ζ;h; (x1, t1), · · · , (xm, tm)) :=

{
e−

1
3 t1ζ

3+x1ζ
2+h1ζ , ℓ = 1,

e−
1
3 (tℓ−tℓ−1)ζ

3+(xℓ−xℓ−1)ζ
2+(hℓ−hℓ−1)ζ , 2 ≤ ℓ ≤ m.

(3.4)

The integration contours are given as follows. The contours C in
m,L, · · · , C in

2,L, C1,L, C
out
2,L , · · · , Cout

m,L are con-
tours on the left half plane {ζ ∈ C : Reζ < 0} ordered from left to right. Each of these contours goes from
∞e−i2π/3 to ∞ei2π/3. Similarly, the contours C in

m,R, · · · , C in
2,R, C1,R, C

out
2,R, · · · , Cout

m,R are contours on the right

half plane {ζ ∈ C : Reζ > 0} ordered from right to left. Each of these contours goes from ∞e−iπ/5 to ∞eiπ/5.
See Figure 2 for an illustration of the contours when m = 2.

Proof of Proposition 3.1. We will need a variation of the multi-dimensional distribution function formula in
[Liu22a] shown below. This variation was first explicitly written down in [LW24, Equation (2.4)].

P

(
m−1⋂
ℓ=1

{HKPZ(xℓ, tℓ) ≥ hℓ}
⋂

{HKPZ(xm, tm) ≤ hm}

)

= (−1)m−1

∮
>1

· · ·
∮
>1

∑
nℓ≥0

ℓ=1,··· ,m

1

(n1! · · ·nm!)2
Dn(h; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

.

(3.5)

Note the summation allows some nℓ to be zero. The function Dn(h; z) is defined in (3.3)1, and when some
nℓ = 0 we should view the corresponding empty product as 1. One further observation is that the summand
in (3.5) vanishes if any 1 ≤ ℓ ≤ m − 1 satisfies nℓ = 0 since the zℓ integral equals to zero (by deforming

1The original formula has the usual choice of contours in the definition of Dn(h;z) where the angles going to infinity are
±2π/3 (for Cℓ,L contours) and ±π/3 (for Cℓ,R contours). When some times become equal, then the contours need to be bent
according to the order of (xℓ, τℓ) under ≺ to ensure the decay of the integrand (see the discussions after the Definition 2.25 in
[Liu22a]). In this paper, we bend the contours at the beginning so that the integral is well defined in the definition of Dn(h;z)
for all ordered points (xℓ, tℓ) under the ordering ≺.
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Re

Im

C in
2,L C1,L Cout

2,L

Cout
2,R C1,R C in

2,R

Figure 2: Illustration of the contours in Dn(h; z) when m = 2.

the zℓ contour to infinity). This observation was also made in [LW24, Section 3.2] and [BL24, Lemma 2.3].
Thus the right hand side of (3.5) satisfies the following relation

(−1)m−1

∮
>1

· · ·
∮
>1

∑
nℓ≥0

ℓ=1,··· ,m

1

(n1! · · ·nm!)2
Dn(h; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

= (−1)m−1

∮
>1

· · ·
∮
>1

∑
nℓ≥1

ℓ=1,··· ,m−1

1

(n1! · · ·nm−1!)2
Dn̂(ĥ; ẑ; (x1, t1), · · · , (xm−1, tm−1))

m−2∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

− (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

ℓ=1,··· ,m

1

(n1! · · ·nm!)2
Dn(h; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

,

(3.6)

where the first sum comes from the case when nm = 0 and the second sum comes from the case when nm ≥ 1,
and the notations n̂, ĥ, ẑ represent the vectors n,h, z after removing the last coordinate respectively. Note
that the left hand side of (3.5) satisfies the simple relation

P

(
m−1⋂
ℓ=1

{HKPZ(xℓ, tℓ) ≥ hℓ}
⋂

{HKPZ(xm, tm) ≤ hm}

)

= P

(
m−1⋂
ℓ=1

{HKPZ(xℓ, tℓ) ≥ hℓ}}

)
− P

(
m⋂
ℓ=1

{HKPZ(xℓ, tℓ) ≥ hℓ}

)
.

(3.7)

Compare the two equations (3.6) and (3.7). And note that Proposition 3.1 is a well known formula for
1− FGUE when m = 1, see [Liu22a, Equation (23)] for an example. The case for general m then follows by
a simple induction on m using (3.6) and (3.7).

We also need a formula of the derivative of the tail probability formula. Note that Lemma 2.6 allows us
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to take the derivative inside the integral and we obtain the following proposition.

Proposition 3.2. Assuming the same notations as in Proposition 3.1, we have

∂

∂hk
P

(
m⋂
ℓ=1

{HKPZ(xℓ, tℓ) ≥ hℓ}

)
= (−1)m

∮
>1

· · ·
∮
>1

∑
nℓ≥1

ℓ=1,··· ,m

1

(n1! · · ·nm!)2
∂

∂hk
Dn(z,h)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

,

(3.8)
for any 1 ≤ k ≤ m, where ∂

∂hk
Dn(z,h) has the same formula as Dn(z,h) in (3.3), except that we need to

replace
∏nℓ

iℓ=1

Fℓ(ξ
(ℓ)
iℓ

)

Fℓ(η
(ℓ)
iℓ

)
by ∂

∂hk

∏nℓ

iℓ=1

Fℓ(ξ
(ℓ)
iℓ

)

Fℓ(η
(ℓ)
iℓ

)
.

3.2 Proof of Proposition 1.13

Now we prove Proposition 1.13. When m = 1, it follows from the known result of the right tail estimate of
the GUE Tracy-Widom distribution. In fact, it is known that the one point distribution function of HKPZ

is given by the GUE Tracy-Widom distribution

P
(
HKPZ(x, t) ≤ h

)
= FGUE

(
h

t1/3
+

x2

t4/3

)
. (3.9)

It is also well known that, see [BBD08, Equation (25)] and [Liu22b, Equation (3.4)] for example, the GUE
Tracy-Widom distribution satisfies the following upper tail estimate

1− FGUE(L) =
e−

4
3L

3/2

16πL3/2

(
1 +O(L−3/2)

)
, F′

GUE(L) =
e−

4
3L

3/2

8πL

(
1 +O(L−3/2)

)
(3.10)

as L → ∞. Combining the above two results, we immediately obtain Proposition 1.13 when m = 1.
Throughout the proof below, we always assume m ≥ 2.
We write, using Proposition 3.1 and Proposition 3.2,

16πL3/2e
4
3L

3/2

P

(
m⋂
ℓ=1

{HL(αℓ, τℓ) ≥ βℓ}

)

= (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

ℓ=1,··· ,m

1

(n1! · · ·nm!)2
16πL3/2e

4
3L

3/2

Dn(h; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

(3.11)

and

16πL3/2e
4
3L

3/2 ∂

∂βk
P

(
m⋂
ℓ=1

{HL(αℓ, τℓ) ≥ βℓ}

)

= (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

ℓ=1,··· ,m

1

(n1! · · ·nm!)2
16πL3/2e

4
3L

3/2 ∂

∂βk
Dn(h; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

(3.12)

with the notations the same as in Proposition 3.1 but with the parameters chosen as follows

xℓ = αℓL
−1, tℓ = 1 + τℓL

−3/2, hℓ = L+ βℓL
−1/2, ℓ = 1, · · · ,m. (3.13)

It turns out that each term in the summand converges as L → ∞. More precisely, for n1 > 1 we define

K̂n(β; z) = K̂n(β; z; (α1, τ1), · · · , (αm, τm)) := 0, (3.14)
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and for n1 = 1 we define

K̂n(β; z) =K̂n(β; z; (α1, τ1), · · · , (αm, τm))

:=2

m−1∏
ℓ=1

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γ̂in
ℓ,L

du
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γ̂out
ℓ,L

du
(ℓ)
iℓ

2πi

)∫
Γ̂L

eu
2 du√

πi

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γ̂in
ℓ,R

dv
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γ̂out
ℓ,R

dv
(ℓ)
iℓ

2πi

)∫
iR
ev

2 dv√
πi

C(−1 ⊔ V (2); 1 ⊔ U (2)) ·
m∏
ℓ=2

C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)) ·
m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)

(3.15)

where the functions fℓ are defined in (2.14), and for notation convenience we set nm+1 = 0 and U (m+1) =
V (m+1) = ∅. The integration contours are chosen specifically in the following way. Let Γ̂L := {re±i2π/3 : r ≥
0} with orientation from ∞e−i2π/3 to ∞ei2π/3, and

Γ̂R :=

{
yi : − cot

2π

5
< y < cot

2π

5

}
∪
{
i · cot 2π

5
+ reiπ/5 : r ≥ 0

}
∪
{
−i · cot 2π

5
+ re−iπ/5 : r ≥ 0

}
(3.16)

with orientation from ∞e−iπ/5 to ∞eiπ/5. Then we define

Γ̂in
ℓ,L = −1− aℓ + Γ̂L, Γ̂out

ℓ,L = −1 + aℓ + Γ̂L, 2 ≤ ℓ ≤ m, (3.17)

and
Γ̂in
ℓ,R = 1 + aℓ + Γ̂R, Γ̂out

ℓ,R = 1− aℓ + Γ̂R, 2 ≤ ℓ ≤ m, (3.18)

where a2, · · · , am are constants satisfying 0 < a2 < · · · < am < 1. Note that the contours Γ̂⋆
ℓ,⋄, 2 ≤ ℓ ≤ m,

⋄ ∈ {L,R}, ⋆ ∈ {in, out} can also be viewed as the contours Γ⋆
ℓ,⋄ appeared in the Definition 2.2 for the

function T, with a more specific setting here to simplify our asymptotic analysis later. We also note that∫
Γ̂L

eu
2 du√

πi
=

∫
iR
ev

2 dv√
πi

= 1. (3.19)

Thus we have, by comparing (3.15) with (2.17),

K̂n(β; z) = Kn(β; z) (3.20)

when n1 = 1. Proposition 3.1 hence follows from the following two lemmas, Proposition 2.7, and the
dominated convergence theorem.

Lemma 3.3. Assume that n, z,α, τ ,β are fixed, and x, t,h depend on L as in (3.13). Then we have

16πL3/2e
4
3L

3/2

Dn(h, z; (x1, t1), · · · , (xm, tm)) → K̂n(β; z; (α1, τ1), · · · , (αm, τm)) (3.21)

and

16πL3/2e
4
3L

3/2 ∂

∂βk
Dn(h, z; (x1, t1), · · · , (xm, tm)) → ∂

∂βk
K̂n(β; z; (α1, τ1), · · · , (αm, τm)) (3.22)

as L → ∞.
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Lemma 3.4. For sufficiently large L, we have

∣∣∣L3/2e
4
3L

3/2

Dn(n; z)
∣∣∣ ≤ Cn1+···+nm

m−1∏
ℓ=1

(1 + |zℓ|)nℓ+1

|1− zℓ|nℓ+1−nℓ |zℓ|nℓ+1
·

m∏
ℓ=1

nnℓ

ℓ (3.23)

and ∣∣∣∣L3/2e
4
3L

3/2 ∂

∂βk
Dn(n; z)

∣∣∣∣ ≤ Cn1+···+nm

m−1∏
ℓ=1

(1 + |zℓ|)nℓ+1

|1− zℓ|nℓ+1−nℓ |zℓ|nℓ+1
·

m∏
ℓ=1

nnℓ

ℓ (3.24)

where C is a positive constant independent of z.

The proof of these two lemmas are given in Section 3.3.

3.3 Asymptotic analysis

In this subsection, we perform the asymptotic analysis and prove Lemmas 3.3 and 3.4.
We deform the contours in (3.3) in the following way

C⋆
ℓ,⋄ =

√
LΓ̂⋆

ℓ,⋄, for 2 ≤ ℓ ≤ m, ⋄ ∈ {L,R}, ⋆ ∈ {in, out}, (3.25)

and
C1,L = −

√
L+ L−1/4Γ̂L, C1,R =

√
L+ L1/2Γ̂R =

√
L+ L−1/4(L3/4Γ̂R). (3.26)

Note that the ordering of the Γ̂-contours ensures that the C-contours are still of the same order and the
deformation will not pass any poles of the integrand. The variables are changed accordingly

ξ
(ℓ)
iℓ

=
√
Lu

(ℓ)
iℓ

, η
(ℓ)
iℓ

=
√
Lv

(ℓ)
iℓ

, 1 ≤ iℓ ≤ nℓ, 2 ≤ ℓ ≤ m (3.27)

and
ξ
(1)
i1

= −
√
L+ L−1/4u

(1)
i1

, η
(1)
i1

=
√
L+ L−1/4v

(1)
i1

, 1 ≤ i1 ≤ n1. (3.28)

This change leads to

16πL3/2e
4
3L

3/2

Dn(h; z)

=16π

m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γ̂in
ℓ,L

du
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γ̂out
ℓ,L

du
(ℓ)
iℓ

2πi

)
n1∏

i1=1

∫
Γ̂L

du
(1)
i1

2πi

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γ̂in
ℓ,R

dv
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γ̂out
ℓ,R

dv
(ℓ)
iℓ

2πi

)
n1∏

i1=1

∫
L3/4Γ̂R

dv
(1)
i1

2πi

Ln1/2C(η(1); ξ(1)) ·
m∏
ℓ=1

L(nℓ+nℓ+1)/2C(ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1))

·
m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
·

n1∏
i1=1

e
2
3L

3/2

F1(ξ
(1)
i1

)

e−
2
3L

3/2
F1(η

(1)
i1

)
· L3/2(1−n1)e−

4
3 (n1−1)L3/2

m−1∏
ℓ=1

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1

(3.29)

where in the integrand the notations ξ(ℓ) = (ξ
(ℓ)
1 , · · · , ξ(ℓ)nℓ ),η = (η

(ℓ)
1 , · · · , η(ℓ)nℓ ) are functions of u

(ℓ)
iℓ

and v
(ℓ)
iℓ
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determined by (3.27) and (3.28). Moreover,

16πL3/2e
4
3L

3/2 ∂

∂βk
Dn(h; z)

=16π

m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γ̂in
ℓ,L

du
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γ̂out
ℓ,L

du
(ℓ)
iℓ

2πi

)
n1∏

i1=1

∫
Γ̂L

du
(1)
i1

2πi

·
m∏
ℓ=2

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γ̂in
ℓ,R

dv
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γ̂out
ℓ,R

dv
(ℓ)
iℓ

2πi

)
n1∏

i1=1

∫
L3/4Γ̂R

dv
(1)
i1

2πi

Ln1/2C(η(1); ξ(1)) ·
m∏
ℓ=1

L(nℓ+nℓ+1)/2C(ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)) ·Hk

·
m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
·

n1∏
i1=1

e
2
3L

3/2

F1(ξ
(1)
i1

)

e−
2
3L

3/2
F1(η

(1)
i1

)
· L3/2(1−n1)e−

4
3 (n1−1)L3/2

m−1∏
ℓ=1

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1

(3.30)

where

Hk =



nm∑
im=1

(u
(m)
im

− v
(m)
im

), k = m,

nk∑
ik=1

(u
(k)
ik

− v
(k)
ik

)−
nk+1∑

ik+1=1

(u
(k+1)
ik+1

− v
(k+1)
ik+1

), 2 ≤ k ≤ m− 1,

n1∑
i1=1

(−2 + L−3/4(u
(1)
i1

− v
(1)
i1

))−
n2∑

i2=1

(u
(2)
i2

− v
(2)
i2

), k = 1.

(3.31)

3.3.1 Some inequalities

We will need some inequalities to bound the integrand and apply the dominated convergence theorem.
Note that our choice of contours in (3.25) and (3.26) implies that

dist(C in
ℓ,L ∪ Cout

ℓ,L ∪ C in
ℓ+1,R ∪ Cout

ℓ+1,R;C
in
ℓ,R ∪ Cout

ℓ,R ∪ C in
ℓ+1,L ∪ Cout

ℓ+1,L) ≥ c1
√
L, 2 ≤ ℓ ≤ m− 1, (3.32)

for some positive constant c1, and

dist(C1,L ∪ C in
2,R ∪ Cout

2,R;C1,R ∪ C in
2,L ∪ Cout

2,L ) ≥ c2
√
L (3.33)

for some positive constant c2. Therefore Lemma 2.1 implies

|Ln1/2C(η(1); ξ(1))| ≤ (1/c2)
n1n

n1/2
1 , (3.34)

and

|L(nℓ+nℓ+1)/2C(ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1))| ≤ (
√
2/c1)

nℓ+nℓ+1n
nℓ/2
ℓ n

nℓ+1/2
ℓ+1 , ℓ = 1, · · · ,m. (3.35)

We also need the following bound for the function F1. Recall F1(ζ) = e−
1
3 t1ζ

3+x1ζ
2+h1ζ defined in (3.4).

Also note that the parameters are scaled as in (3.13).

Lemma 3.5. For all u ∈ Σ̂L, we have

|e2/3L
3/2−(u2+α1−β1+

1
3 τ1)F1(−

√
L+ L−1/4u)| ≤ ec3L

−3/4

(3.36)
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for sufficiently large L, where c3 and c4 are constants independent on u and L. When v ∈ iR, we have

|e−2/3L3/2

F1(
√
L+ L−1/4v)| ≥ e−(1−c′3)v

2+α1+β1− 1
3 τ1 (3.37)

for sufficiently large L, and when v = L3/4(±i cot 2π
5 + re±iπ/5) and r ≥ 0 we have

|F1(
√
L+ L−1/4v)| ≥ e2/3L

3/2+c′4L
3/2(1+r) (3.38)

for sufficiently large L. Here the constants c′3 ∈ (0, 1) and c′4 > 0 are independent of v and L. Moreover, if
u ∈ Σ̂L is fixed, we have

lim
L→∞

e2/3L
3/2

F1(−
√
L+ L−1/4u) = eu

2+α1−β1+
1
3 τ1 , (3.39)

and similarly, if v ∈ iR is fixed, we have

lim
L→∞

e−2/3L3/2

F1(
√
L+ L−1/4v) = e−v2+α1+β1− 1

3 τ1 . (3.40)

Proof of Lemma 3.5. The proof is based on a direct calculation and the fact that the exponent decays or
grows super-exponentially along the contour Σ̂L or Σ̂R respectively.

We first prove (3.36) and (3.39). By inserting (3.13) and simplifying the exponent, we have

e2/3L
3/2−(u2+α1−β1+

1
3 τ1)F1(−

√
L+ L−1/4u)

= exp

(
L−3/4

(
−1

3
(1 + τ1L

−3/2)u3 + (τ1 + α1)L
−3/4u2 + (β1 − τ1 − 2α1)u

))
.

(3.41)

Recall the contour Σ̂L = {re±i2π/3 : r ≥ 0}. Along this contour, it is easy to see that Re(u3) grows to +∞ as
a cubic function. Thus the real part of − 1

3 (1+τ1L
−3/2)u3+(τ1+α1)L

−3/4u2+(β1−τ1−2α1)u is uniformly
bounded by a constant. This constant can be chosen independent of L. Thus the right hand side of (3.41)
is bounded by a constant c3 independent of L. This implies (3.36). The equation (3.41) also implies (3.39)
for fixed u ∈ Σ̂L.

Now we consider the other cases. If v ∈ iR, we similarly obtain,

e−2/3L3/2

F1(
√
L+ L−1/4v) = e−(1+(τ1−α1)L

−3/2)v2+α1+β1− 1
3 τ1+vL−3/4(− 1

3 v
2−τ1+2α1+β1− 1

3 τ1v
2L−3/2). (3.42)

Note that the last term in the exponent vL−3/4(− 1
3v

2 − τ1 + 2α1 + β1 − 1
3τ1v

2L−3/2) ∈ iR. Thus

|e−2/3L3/2

F1(
√
L+ L−1/4v)| = e−(1+(τ1−α1)L

−3/2)v2+α1+β1− 1
3 τ1 ≥ e−(1−c′3)v

2+α1+β1− 1
3 τ1 (3.43)

for all v ∈ iR and some positive constant c′3 when L is sufficiently large. This implies (3.37). We also note
that (3.40) follows from (3.42).

It remains to show (3.38). Note that the two different cases of v lead to the same formula since the
conjugation of a function doesn’t change its norm. We only consider the case when v is in the upper half
plane v = L3/4(i cot 2π

5 + reiπ/5). In this case, by a direct computation, we have

|e−2/3L3/2

F1(
√
L+ L−1/4v)|

= e[L
3/2( 2

3+cot2 2π
5 )+O(1)]+r[L3/2(2 cot 2π

5 sin π
5 +cot2 2π

5 cos π
5 )+O(1)]+r2·O(1)+r3[− 1

3L
3/2 cos 3π

5 +O(1)]
(3.44)

where O(1) are constant terms which are independent of both r and L. (3.38) follows immediately.
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3.3.2 Proof of Lemma 3.3 and Lemma 3.4

We first prove Lemma 3.3.

Assume U (ℓ) = (u
(ℓ)
1 , · · · , u(ℓ)

nℓ ) and V (ℓ) = (v
(ℓ)
1 , · · · , v(ℓ)nℓ ), 1 ≤ ℓ ≤ m are fixed at the moment.

Recall the definition of the Cauchy determinants in (2.6) and (2.7). It is easy to check that

L
1
2 (nℓ+nℓ+1)C(ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)) = C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)), ℓ ≥ 2, (3.45)

where we set nℓ+1 = 0 and hence U (m+1) and V (m+1) are both empty vectors. When ℓ = 1, noting that all

ξ
(1)
i1

are around −
√
L and all η

(1)
i1

are around
√
L when L becomes large, 1 ≤ i1 ≤ n1, we have the asymptotic

lim
L→∞

L(n1+n2)/2C(ξ(1) ⊔ η(2);η(1) ⊔ ξ(2)) =

{
C(−1 ⊔ V (2); 1 ⊔ U (2)), ℓ = 1, and n1 = 1,

0, ℓ = 1, and n1 ≥ 2,
(3.46)

and similarly

lim
L→∞

Ln1/2C(η(1); ξ(1)) =

{
1/2, n1 = 1,

0, n1 ≥ 2.
(3.47)

Finally, inserting the parameters (3.13) and recalling (3.4) and (2.14), we have

Fℓ(ξ
(ℓ)
iℓ

) = fℓ(u
(ℓ)
iℓ

), Fℓ(η
(ℓ)
iℓ

) = fℓ(v
(ℓ)
iℓ

) (3.48)

for 1 ≤ iℓ ≤ nℓ and 2 ≤ ℓ ≤ m, and using Lemma 3.5 we have

lim
L→∞

e
2
3L

3/2

F1(ξ
(1)
i1

) = f1(−1) · e(u
(1)
i1

)2 , lim
L→∞

1

e−
2
3L

3/2
F1(η

(1)
i1

)
=

1

f1(1)
· e(v

(1)
i1

)2 . (3.49)

Therefore, if we are able to take the limit inside the integral, we see that the large L limit of (3.29) is 0
for n1 > 1, and matches (3.15) for n1 = 1. Thus its limit is K̂n(β; z), and (3.21) holds. For (3.22), we need
the limit of the extra factor

lim
L→∞

Hk = H̃k :=



nm∑
im=1

(u
(m)
im

− v
(m)
im

), k = m,

nk∑
ik=1

(u
(k)
ik

− v
(k)
ik

)−
nk+1∑

ik+1=1

(u
(k+1)
ik+1

− v
(k+1)
ik+1

), 2 ≤ k ≤ m− 1,

−2n1 −
n2∑

i2=1

(u
(2)
i2

− v
(2)
i2

), k = 1.

(3.50)

For the only nontrivial case n1 = 1, this limit matches the factor if we take the βk derivative of the function
K̂n(β; z; (α1, τ1), · · · , (αm, τm)):

∂

∂βk

m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
=

m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
· H̃k. (3.51)

Lemma 3.3 follows immediately.

It remains to justify that we can take the large L limit inside the integral. We only need to find a uniform
bound which is integrable so that the dominated convergence theorem applies. In fact, applying Lemma
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2.1 with (3.32) and (3.33), and Lemma 3.5, we have the following uniform bound for the right hand side of
(3.29)

16πc|n| ·
m−1∏
ℓ=1

(1 + |zℓ|nℓ+1)

|1− zℓ|nℓ+1−nℓ |zℓ|nℓ+1
·

m∏
ℓ=1

nnℓ

ℓ ·
m∏
ℓ=2

nℓ∏
iℓ=1

∫
Γ̂in
ℓ,L∪Γ̂out

ℓ,L

|fℓ(u(ℓ)
iℓ

)|
|du(ℓ)

iℓ
|

2π

∫
Γ̂in
ℓ,R∪Γ̂out

ℓ,R

1

|fℓ(u(ℓ)
iℓ

)|

|dv(ℓ)iℓ
|

2π

·
n1∏

i1=1

∫
Γ̂L

∣∣∣e(u(1)
i1

)2
∣∣∣ |du(1)

i1
|

2π

(∫ iL3/4 cot 2π
5

−iL3/4 cot 2π
5

∣∣∣e(1−c′3)(v
(1)
i1

)2
∣∣∣ |dv(1)i1

|
2π

+ 2

∫ ∞

0

e−c′4L
3/2(1+ri1 )

L3/4dri1
2π

)
(3.52)

which is bounded by

Cn1+···+nm ·
m−1∏
ℓ=1

(1 + |zℓ|nℓ+1)

|1− zℓ|nℓ+1−nℓ |zℓ|nℓ+1
·

m∏
ℓ=1

nnℓ

ℓ (3.53)

since each integral in (3.52) is uniformly bounded. The uniform bound of (3.30) is similar. Note that

|Hk| ≤
∏m

ℓ=1

∏nℓ

iℓ=1(2 + |u(ℓ)
iℓ

|)(2 + |v(ℓ)iℓ
|), therefore (3.30) is uniformly bounded by (3.52), except that each

integrand needs to be multiplied by a linear factor. Such an expression still gives the bound (3.53) with a
different constant C. This completes the proof.

Finally, we prove Lemma 3.4. Note the equations (3.29) and (3.30), the uniform bound (3.53) for both
right hand sides of (3.29) and (3.30). Lemma 3.4 follows immediately.

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using Proposition 1.13. We split the proof of the two parts into two
different subsections.

4.1 Proof of Theorem 1.1 (a)

Recall the notation HL in (1.24). Theorem 1.1 (a) is equivalent to the following convergence for arbitrary
m ≥ 1 distinct points (αℓ, τℓ) ∈ R2 and arbitrary real numbers βℓ ∈ R, 1 ≤ ℓ ≤ m,

P

(
m⋂
ℓ=1

{HL(αℓ, τℓ) ≥ βℓ}
∣∣∣ {HL(α̂, τ̂) ≥ β̂

})
→ T̂(β1 − β̂, · · · , βm − β̂; (α1 − α̂, τ1 − τ̂), · · · , (αm − α̂, τm − τ̂))

(4.1)

as L → ∞, where the function T̂ is the joint probability functions of HUT defined in Definition 2.4. Without
loss of generality, we assume that (α1, τ1), · · · , (αm, τm) are ordered in the following way, (α1, τ1) ≺ · · · ≺
(αm, τm) since both sides are invariant under the permutation of the indices. Now we consider the following
three cases.

If m = 1 and (α1, τ1) = (α̂, τ̂), then the left hand side of (4.1) becomes

P
(
HL(α1, τ1) ≥ max{β1, β̂}

)
P
(
HL(α1, τ1) ≥ β̂

) → e−2max{β1−β̂,0} = T(max{β1 − β̂, 0}; (0, 0))

= T̂(β1 − β; (0, 0))

(4.2)

as L → ∞, where the function T and T̂ are defined in Definitions 2.2 and 2.4 respectively. The convergence
in the above equation follows from the estimate (1.27).

31



If m ≥ 2 and (αk, τk) = (α̂, τ̂) for some 1 ≤ k ≤ m, and βk ≥ β̂, the left hand side of (4.1) becomes

P (
⋂m

ℓ=1 {HL(αℓ, τℓ) ≥ βℓ})

P
(
HL(α̂, τ̂) ≥ β̂

) → T(β; (α1, τ1), · · · , (αm, τm))

T(β̂; (α̂, τ̂))
= e−

2
3 τ̂+2β̂T(β; (α1, τ1), · · · , (αm, τm)) (4.3)

as L → ∞. Here the convergence follows from Proposition 1.13 and the second equation follows from the
formula (2.15). Note that the right hand side of (4.3) equals to, by using Proposition 2.8,

T(β1 − β̂, · · · , βm − β̂; (α1 − α̂, τ1 − τ̂), · · · , (αm − α̂, τm − τ̂)) (4.4)

which matches the right hand side of (4.1) since βk− β̂ ≥ 0. Thus (4.1) holds. Note that in this argument we

assumed that βk ≥ β̂. If βk < β̂, then we need to replace βk on the left hand side of (4.3) by β̂ since the event

HL(αk, τk) ≥ βk is trivial conditioned on HL(α̂ = αk, τ̂ = τk) ≥ β̂. We then end at the limit (4.4) with βk

replaced by β̂, which is T(β1− β̂, · · · , 0 = max{0, βk− β̂}, · · · , βm− β̂; (α1− α̂, τ1− τ̂), · · · , (αm− α̂, τm− τ̂))
which still matches the right hand side of (4.1) (see Definition 2.4 case (i)).

For the last case, we assume that m ≥ 1 and (αℓ, τℓ) ̸= (α̂, τ̂) for all 1 ≤ ℓ ≤ m. For this case, the left
hand side of (4.1) becomes

P
(⋂m

ℓ=1 {HL(αℓ, τℓ) ≥ βℓ}
⋂{

HL(α̂, τ̂) ≥ β̂
})

P
(
HL(α̂, τ̂) ≥ β̂

) . (4.5)

This expression has been considered in the second case if we replace the m points (αℓ, τℓ), ℓ = 1, · · · ,m, by
the following new sequence of points

(α1, τ1), · · · , (αk−1, τk−1), (α̂, τ̂), (αk, τk), · · · , (αm, τm) (4.6)

and replace the vector β by (β1, · · · , βk−1, β̂, βk+1, · · · , βm). Here k is the index such that (αk−1, τk−1) ≺
(α̂, τ̂) ≺ (αk, τk). The argument of the second case implies that (4.5) converges to

T(· · · , βk−1 − β̂, 0, βk − β̂, · · · ; · · · , (αk−1 − α̂, τk−1 − τ̂), (0, 0), (αk+1 − α̂, τk+1 − τ̂), · · · ) (4.7)

here we suppressed the irrelevant coordinates in the function T for notation simplification. Note that this
matches the right hand side of (4.1) by Definition 2.4 case (ii). Thus (4.1) holds.

In conclusion, for all the three cases we proved (4.1). Theorem 1.1 (a) follows immediately.

4.2 Proof of Theorem 1.1 (b)

In this subsection we prove the second part of Theorem 1.1.
Suppose (α1, τ1) ≺ · · · ≺ (αm, τm) are m ≥ 2 points on R2 and β1, · · · , βm ∈ R. Assume that (αk, τk) =

(α̂, τ̂) and βk = β̂ for some 1 ≤ k ≤ m. We need to prove that

lim
L→∞

P

 ⋂
1≤ℓ≤m
ℓ̸=k

{
HKPZ(xℓ, tℓ) ≥ hℓ

} ∣∣∣HKPZ(x̂, t̂) = ĥ

 = P

 ⋂
1≤ℓ≤m
ℓ̸=k

{
HUT

0 (αℓ − α̂, τℓ − τ̂) ≥ βℓ − β̂
}
(4.8)

where
xℓ = αℓL

−1, tℓ = 1 + τℓL
−3/2, hℓ = L+ βℓL

−1/2 (4.9)

for 1 ≤ ℓ ≤ m.
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Now we write the left hand side of (4.8) as

lim
L→∞

d
dĥ

P
(⋂m

ℓ=1

{
HKPZ(xℓ, tℓ) ≥ hℓ

})
d
dĥ

P
(
HKPZ(x̂, t̂) ≥ ĥ

) = lim
L→∞

∂
∂βk

P
(⋂m

ℓ=1

{
HKPZ(xℓ, tℓ) ≥ hℓ

})
∂

∂βk
P (HKPZ(xk, tk) ≥ hk)

= lim
L→∞

∂
∂βk

P (
⋂m

ℓ=1 {HL(αℓ, τℓ) ≥ βℓ})
∂

∂βk
P (HL(αk, τk) ≥ βk)

(4.10)

where HL(α, τ) = L1/2(HKPZ(αL−1, 1 + τL−3/2) − L) is defined in (1.24). Now we apply Proposition 1.13
and further write (4.10) as

∂
∂βk

T(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))
∂

∂βk
T(βk; (αk, τk))

=

∂
∂βk

T(β1 − β, · · · , βm − β; (α1 − α, τ1 − τ), · · · , (αm − α, τm − τ))
∂

∂βk
T(βk − β; (αk − α, τk − τ))

(4.11)

for any α, τ, β ∈ R, where we also used the property of T when we shift the parameters as described in
Proposition 2.8. Assume β < βk. The above expression can be further written as, using Definition 2.4,

∂
∂βk

P
(⋂

1≤ℓ≤m

{
HUT(αℓ − α, τℓ − τ) ≥ βℓ − β

})
∂

∂βk
P (HUT(αk − α, τk − τ) ≥ βk − β)

= P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{
HUT(αℓ − α, τℓ − τ) ≥ βℓ − β

} ∣∣∣HUT(αk − α, τk − τ) = βk − β



= P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{
HUT(αℓ − α, τℓ − τ)−HUT(αk − α, τk − τ) ≥ βℓ − βk

} ∣∣∣HUT(αk − α, τk − τ) = βk − β

 .

(4.12)

Now we take α = αk = α̂ and τ = τk = τ̂ , and note that HUT
0 is independent of HUT(0, 0) (see Proposition

1.5). We see the equation above equals to the right hand side of (4.8). This completes the proof.

5 Proof of Proposition 1.8

In this section, we prove Proposition 1.8. Since the difference between the two fields HUT and HUT
0 is an

exponential random variable HUT(0, 0) which doesn’t depend on λ, it is sufficient to prove the proposition
for one field. We prove it for the field HUT in two subsections for the negative and positive time regimes
respectively.

5.1 Brownian limit in the negative time regime

In the negative time regime, Proposition 1.8 follows from the following two propositions.

Proposition 5.1. Assume m ≥ 2 is an integer, and x1, · · · , xm−1,h1, · · · ,hm−1 ∈ R and t1 < · · · < tm−1 <
0 are fixed. Then

P

(
m−1⋂
ℓ=1

{
1√
2λ

(
HUT

(
λ1/2xℓ√

2
, λtℓ

)
− λtℓ

)
≥ hℓ

})
→ P

(
m−1⋂
ℓ=1

{min{B1(−tℓ) + xℓ,B2(−tℓ)− xℓ} ≥ hℓ}

)
(5.1)
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as λ → ∞.

Proposition 5.2. Let Y be a random field on R× (−T, 0) with the property that for every positive integer
d and real numbers x1, · · · , xd, the cumulative distribution function P

(
∩d
ℓ=1{Y (xℓ, tℓ) ≤ hℓ}

)
is continuous

in the variables hℓ and tℓ for all 1 ≤ ℓ ≤ d. If a sequence of random fields Yn on R × (−T, 0) satisfies
P
(
∩d
ℓ=1{Yn(xℓ, tℓ) ≤ hℓ}

)
→ P

(
∩d
ℓ=1{Y (xℓ, tℓ) ≤ hℓ}

)
as n → ∞ for all d ≥ 1, all ordered time parameters

t1 < · · · < td and all other real parameters xℓ, hℓ, 1 ≤ ℓ ≤ d, then the fields Yn(x, t) → Y (x, t) in the sense
of convergence of finite-dimensional distributions as n → ∞.

Proposition 5.2 was first proved in [LW24, Lemma 3.6], also see [BL24, Lemma 2.1], where the time
parameter is stated within the interval (0, T ) instead of (−T, 0). However, the statement actually holds for
any time interval without changing the proof. We also note that although the assumptions of Proposition 5.2
are about the joint cumulative distribution functions P

(
∩d
ℓ=1{Yn(xℓ, tℓ) ≤ hℓ}

)
→ P

(
∩d
ℓ=1{Y (xℓ, tℓ) ≤ hℓ}

)
,

it can be changed to P
(
∩d
ℓ=1{Yn(xℓ, tℓ) ≥ hℓ}

)
→ P

(
∩d
ℓ=1{Y (xℓ, tℓ) ≥ hℓ}

)
by replacing Yn and Y by −Yn

and −Y respectively. Therefore the two propositions above implies Proposition 1.8 (a).

Below we prove Proposition 5.1. We write

αℓ =
λ1/2xℓ√

2
, τℓ = λtℓ, βℓ = λtℓ +

√
2λhℓ, 1 ≤ ℓ ≤ m, (5.2)

where we set
xm = 0, tm = 0, hm = 0. (5.3)

Then the left hand side of (5.1) equals to, using Definitions 2.4 and 2.2,

T(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))

= (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

2≤ℓ≤m

1

(n2! · · ·nm−1!)2
Kn(β; z)

m−1∏
ℓ=1

dzℓ
2πizℓ(1− zℓ)

. (5.4)

Here the notations in the formula are the same as in Definition 2.2, especially n = (n1 = 1, n2, · · · , nm), and
Kn is defined in (2.17). It turns out if the parameters satisfy (5.2) and (5.3), the main contribution of the
above summation comes from the term n2 = · · · = nm = 1 and all other terms converges to zero, as λ → ∞.
The asymptotic analysis is very similar to that in [LW24, Section 3] where the leading contribution comes
from the term n1 = · · · = nm = 1, and that in Section 3 of this paper, hence we only provide the main steps
of the proof and skip the details.

The main technical part of the proof is the following two lemmas, both assuming z is in a compact set
of (C \ {0, 1})m−1.

Lemma 5.3. When n2 = · · · = nm = 1, we have

lim
λ→∞

Kn(β; z)

= (−1)m
m−1∏
ℓ=1

(1− zℓ)(1− z−1
ℓ )

·
m∏
ℓ=2

(
1

1− zℓ−1

∫
Cin

ℓ,L

dξℓ
2πi

− zℓ−1

1− zℓ−1

∫
Cout

ℓ,L

dξℓ
2πi

)(
1

1− zℓ−1

∫
Cin

ℓ,R

dηℓ
2πi

− zℓ−1

1− zℓ−1

∫
Cout

ℓ,R

dηℓ
2πi

)
∏m

ℓ=2 e
1
2 (tℓ−tℓ−1)ξ

2
ℓ+(−xℓ+xℓ−1+hℓ−hℓ−1)ξℓ

ξ2
∏m−1

ℓ=2 (ξℓ+1 − ξℓ)
·
∏m

ℓ=2 e
1
2 (tℓ−tℓ−1)η

2
ℓ+(−xℓ+xℓ−1−hℓ+hℓ−1)ηℓ

(−η2)
∏m−1

ℓ=2 (−ηℓ+1 + ηℓ)

(5.5)

where C in
m,L, · · · , C in

2,L and Cout
2,L , · · · , Cout

m,L are ordered contours on the left half plane Re(ξ) < 0, from left

to right, with orientations from ∞e−i2π/3 to ∞ei2π/3, and similarly C in
m,R, · · · , C in

2,R and Cout
2,R, · · · , Cout

m,R are
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ordered contours on the right half plane Re(η) > 0, from right to left, with orientations from ∞e−iπ/3 to
∞eiπ/3. Moreover, if nℓ ≥ 2 for some 2 ≤ ℓ ≤ m, we have

lim
λ→∞

Kn(β; z) = 0. (5.6)

Lemma 5.4. The following uniform bound holds for Kn(β; z) for sufficiently large λ,

|Kn(β; z)| ≤ e−
4
3 (

∑m
ℓ=2(nℓ−1)(tℓ−tℓ−1))λ+o(λ) ·

m∏
ℓ=2

(1 + |zℓ−1|)2nℓ

|zℓ−1|nℓ |1− zℓ−1|nℓ−nℓ−1
C

∑m
ℓ=2 nℓ

m∏
ℓ=2

nnℓ

ℓ (5.7)

where o(λ) could be chosen as 0 when n2 = · · · = nm = 1.

We emphasize that the contours on the right half plane all have angles ±π/3 instead of ±π/5. With
these angles, the integrand decays super-exponentially fast since tℓ − tℓ−1 > 0 for all ℓ = 2, · · · ,m.

We postpone the proof of these two lemmas to the end of this subsection and prove Proposition 1.8 (a)
first. Assuming Lemma 5.3 and Lemma 5.4, we apply the dominated convergence theorem in (5.4) and have

lim
λ→∞

T(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))

=

m−1∏
ℓ=1

∮
>1

dzℓ
2πizℓ(1− zℓ)

(1− zℓ)(1− z−1
ℓ )

·
m∏
ℓ=2

(
1

1− zℓ−1
·
∫
Cin

ℓ,L

dξℓ
2πi

− zℓ−1

1− zℓ−1

∫
Cout

ℓ,L

dξℓ
2πi

)(
1

1− zℓ−1

∫
Cin

ℓ,R

dηℓ
2πi

− zℓ−1

1− zℓ−1

∫
Cout

ℓ,R

dηℓ
2πi

)
∏m

ℓ=2 e
tℓ−tℓ−1

2 ξ2ℓ+(−xℓ+xℓ−1+hℓ−hℓ−1)ξℓ

ξ2
∏m−1

ℓ=2 (ξℓ+1 − ξℓ)
·
∏m

ℓ=2 e
tℓ−tℓ−1

2 η2
ℓ+(−xℓ+xℓ−1−hℓ+hℓ−1)ηℓ

(−η2)
∏m−1

ℓ=2 (−ηℓ+1 + ηℓ)

=

m∏
ℓ=2

∫
Cout

ℓ,L

dξℓ
2πi

∏m
ℓ=2 e

tℓ−tℓ−1
2 ξ2ℓ+(−xℓ+xℓ−1+hℓ−hℓ−1)ξℓ

ξ2
∏m−1

ℓ=2 (ξℓ+1 − ξℓ)
·

m∏
ℓ=2

∫
Cout

ℓ,R

dηℓ
2πi

∏m
ℓ=2 e

tℓ−tℓ−1
2 η2

ℓ+(−xℓ+xℓ−1−hℓ+hℓ−1)ηℓ

(−η2)
∏m−1

ℓ=2 (−ηℓ+1 + ηℓ)

(5.8)

where we evaluated the zℓ integrals in the last step and only the terms with integrals along the contours
Cout

ℓ,⋄ survive. Now we claim that

m∏
ℓ=2

∫
Cout

ℓ,L

dξℓ
2πi

∏m
ℓ=2 e

tℓ−tℓ−1
2 ξ2ℓ+(−xℓ+xℓ−1+hℓ−hℓ−1)ξℓ

ξ2
∏m−1

ℓ=2 (ξℓ+1 − ξℓ)
= P

(
m−1⋂
ℓ=1

{B1(−tℓ) ≥ hℓ − xℓ}

)
(5.9)

and
m∏
ℓ=2

∫
Cout

ℓ,R

dηℓ
2πi

∏m
ℓ=2 e

tℓ−tℓ−1
2 η2

ℓ+(−xℓ+xℓ−1−hℓ+hℓ−1)ηℓ

(−η2)
∏m−1

ℓ=2 (−ηℓ+1 + ηℓ)
= P

(
m−1⋂
ℓ=1

{B2(−tℓ) ≥ hℓ + xℓ}

)
. (5.10)

These two identities, combing with (5.8), give the desired result (5.1).
The two identities are equivalent (by changing the variables ξ → −η). Hence, we only prove the first one.

It is equivalent to the following identity, using the fact that xm = hm = 0,

m∏
ℓ=2

∫
Cout

ℓ,L

dξℓ
2πi

∏m
ℓ=2 e

tℓ−tℓ−1
2 ξ2ℓ+(ĥℓ−ĥℓ−1)ξℓ

ξ2
∏m−1

ℓ=2 (ξℓ+1 − ξℓ)
= P

(
m−1⋂
ℓ=1

{
B1(−tℓ) ≥ ĥℓ

})
, tm = ĥm = 0. (5.11)

We deform the contours to vertical lines and shift them to the right half plane while keeping their order.
Note that this deformation does not affect the integral on the left hand side since tℓ − tℓ−1 > 0. Now
Cout

2,L , · · · , Cout
m,L are vertical lines on the right half plane ordered from left to right and their orientations are
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all upward. Note that both sides go to 0 if any ĥℓ → ∞ since the coefficient of ĥℓ in the exponent on the
left hand side is ξℓ − ξℓ+1 (when 2 ≤ ℓ ≤ m− 1) or −ξ2 (when ℓ = 1) which always has a negative real part.
Hence it is sufficient to show

∂m−1

∂ĥ1 · · · ∂ĥm−1

m∏
ℓ=2

∫
Cout

ℓ,L

dξℓ
2πi

∏m
ℓ=2 e

tℓ−tℓ−1
2 ξ2ℓ+(ĥℓ−ĥℓ−1)ξℓ

ξ2
∏m−1

ℓ=2 (ξℓ+1 − ξℓ)
=

∂m−1

∂ĥ1 · · · ∂ĥm−1

P

(
m−1⋂
ℓ=1

{
B1(−tℓ) ≥ ĥℓ

})
.

(5.12)
A direct calculation implies the left hand side of (5.12) equals to

(−1)m−1
m∏
ℓ=2

∫
Cout

ℓ,L

dξℓ
2πi

m∏
ℓ=2

e
tℓ−tℓ−1

2 ξ2ℓ+(ĥℓ−ĥℓ−1)ξℓ = (−1)m−1
m∏
ℓ=2

1√
2π

1√
tℓ − tℓ−1

e
−

(ĥℓ−ĥℓ−1)2

2(tℓ−tℓ−1) (5.13)

which matches the right hand side of (5.12). This completes the proof.

The remaining part of this subsection is to prove Lemma 5.3 and Lemma 5.4. As we mentioned before,
due to the similarity of the arguments with [LW24] and Section 3 in this paper, we only provide the main
ideas of the proof and skip details. We also note that Lemma 5.4 implies the second part of Lemma 5.3 since
tℓ − tℓ−1 > 0 and nℓ ≥ 1 for each 2 ≤ ℓ ≤ m.

Recall the formula Kn(β; z) in (2.17). We choose the contours

Γ⋆
ℓ,L = −1 +

1√
2λ

C⋆
ℓ,L, ⋆ ∈ {in, out}, 2 ≤ ℓ ≤ m, (5.14)

and

Γ⋆
ℓ,R = 1 +

1√
2λ

C⋆
ℓ,R, ⋆ ∈ {in, out}, 2 ≤ ℓ ≤ m. (5.15)

Here we emphasize that the contours Γ⋆
ℓ,R in the formula of Kn(β; z) have the angles ±π/5 initially. We are

able to change the angles to ±π/3 since the cubic term (τℓ−τℓ−1)v
3 in the exponent of 1/fℓ(v) is nonzero by

our assumptions that the times are distinct and ordered. We remind that the main reason we chose ±π/5 in
(2.17) is to guarantee the convergence of the integral when the times become equal. See the footnote after
the equation (3.6).

We also changes the variables accordingly

u
(ℓ)
iℓ

= −1 +
1√
2λ

ξ
(ℓ)
iℓ

, v
(ℓ)
iℓ

= 1 +
1√
2λ

η
(ℓ)
iℓ

(5.16)

for u
(ℓ)
iℓ

∈ Γin
ℓ,L ∪ Γout

ℓ,L and v
(ℓ)
iℓ

∈ Γin
ℓ,R ∪ Γout

ℓ,R. If we fix the variables ξ
(ℓ)
iℓ

, η
(ℓ)
iℓ

, it is direct to compute

− τℓ − τℓ−1

3
(u

(ℓ)
iℓ

)3 + (αℓ − αℓ−1)(u
(ℓ)
iℓ

)2 + (βℓ − βℓ−1)u
(ℓ)
iℓ

= −2

3
(tℓ − tℓ−1)λ+

√
λ√
2
(xℓ − xℓ−1)−

√
2λ(hℓ − hℓ−1)

+
1

2
(tℓ − tℓ−1)(ξ

(ℓ)
iℓ

)2 + (−xℓ + xℓ−1 + hℓ − hℓ−1)ξ
(ℓ)
iℓ

+O(λ−1/2)

(5.17)

and

− τℓ − τℓ−1

3
(v

(ℓ)
iℓ

)3 + (αℓ − αℓ−1)(v
(ℓ)
iℓ

)2 + (βℓ − βℓ−1)v
(ℓ)
iℓ

=
2

3
(tℓ − tℓ−1)λ+

√
λ√
2
(xℓ − xℓ−1) +

√
2λ(hℓ − hℓ−1)

− 1

2
(tℓ − tℓ−1)(η

(ℓ)
iℓ

)2 + (xℓ − xℓ−1 + hℓ − hℓ−1)η
(ℓ)
iℓ

+O(λ−1/2).

(5.18)
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This implies, if n2 = · · · = nm = 1, we have

m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
≈

m∏
ℓ=2

e
1
2 (tℓ−tℓ−1)(ξ

(ℓ)
1 )2+(−xℓ+xℓ−1+hℓ−hℓ−1)ξ

(ℓ)
1

e−
1
2 (tℓ−tℓ−1)(η

(ℓ)
1 )2+(xℓ−xℓ−1+hℓ−hℓ−1)η

(ℓ)
1

. (5.19)

Moreover, if nℓ ≥ 2 for any 2 ≤ ℓ ≤ m, then we have

m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)
· f1(−1)

f1(1)
≈ e−

4
3λ(t1+

∑m
ℓ=2 nℓ(tℓ−tℓ−1))+o(λ) = e−

4
3λ(

∑m
ℓ=2(nℓ−1)(tℓ−tℓ−1))+o(λ), (5.20)

which decays exponentially as λ → ∞. So intuitively we know that the main contribution comes from the
term when n2 = · · · = nm = 1.

When n2 = · · · = nm = 1, we have, after a simple computation,

C(−1 ⊔ V (2); 1 ⊔ U (2)) =
−(u

(2)
1 − 1)(v

(2)
1 + 1)

2(v
(2)
1 − u

(2)
1 ) · (u(2)

1 + 1)(v
(2)
1 − 1)

≈ − 2λ

ξ
(2)
1 · (−η

(2)
1 )

, (5.21)

and

C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)) = − (u
(ℓ)
1 − v

(ℓ+1)
1 )(v

(ℓ)
1 − u

(ℓ+1)
1 )

(u
(ℓ)
1 − v

(ℓ)
1 )(u

(ℓ+1)
1 − v

(ℓ+1)
1 )(u

(ℓ)
1 − u

(ℓ+1)
1 )(v

(ℓ)
1 − v

(ℓ+1)
1 )

≈ − 2λ

(−ξ
(ℓ)
1 + ξ

(ℓ+1)
1 )(−η

(ℓ+1)
1 + η

(ℓ)
1 )

,

(5.22)

and

C(U (m);V (m)) =
1

u
(m)
1 − v

(m)
1

≈ −1

2
. (5.23)

Inserting all these estimates in (2.17) we get (5.5).
For Lemma 5.4, we apply Proposition 2.1 and get

|C(−1 ⊔ V (2); 1 ⊔ U (2))| ≤ 2
1+n2

2 n
n2/2
2 (cλ)

n2+1
2 , |C(U (m);V (m))| ≤ nnm/2

m (c′)
nm
2 (5.24)

and

|C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1))| ≤ 2(nℓ+nℓ+1)/2n
nℓ/2
ℓ n

nℓ+1/2
ℓ+1 (cλ)

nℓ+nℓ+1
2 (5.25)

for 2 ≤ ℓ ≤ m − 1, where c > 0 is a constant such that the distance between the Γ contours are at least
(cλ)−1/2, and c′ is a constant such that the distance between Γout

m,L and Γout
m,R is at least (c′)−1/2. Finally∣∣∣∣∣

m∏
ℓ=2

nℓ∏
iℓ=1

du
(ℓ)
iℓ

2πi

dv
(ℓ)
iℓ

2πi

∣∣∣∣∣ = 1

(2λ)n2+···+nm

∣∣∣∣∣
nℓ∏

iℓ=1

dξ
(ℓ)
iℓ

2πi

dη
(ℓ)
iℓ

2πi

∣∣∣∣∣ . (5.26)

Inserting these bounds to (2.17), and noting (5.20), we get Lemma 5.4.

5.2 KPZ fixed point limit in the positive time regime

In the positive time regime, Proposition 1.8 follows from the following proposition.

Proposition 5.5. Assume m ≥ 2 is an integer, (xℓ, tℓ), 2 ≤ ℓ ≤ m, are m−1 points on R×(0,∞) satisfying
(x2, t2) ≺ · · · ≺ (xm, tm), and h2, · · · ,hm ∈ R. Then

P

(
m⋂
ℓ=2

{
λ−1/3HUT

(
λ2/3xℓ, λtℓ

)
≥ hℓ

})
→ P

(
m⋂
ℓ=2

{
HKPZ(xℓ, tℓ) ≥ hℓ

})
(5.27)

as λ → ∞, where HKPZ is the KPZ fixed point with the narrow wedge initial condition.
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Below we prove this proposition.
Denote

x1 = t1 = h1 = 0. (5.28)

Recall Definition 2.4 and Proposition 2.3. We write the left hand side of (5.27) as

T(β1, · · · , βm; (α1, τ1), · · · , (αm, τm))

= (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

2≤ℓ≤m

1

(n2! · · ·nm−1!)2
K̃n(β; z̃)

m−1∏
ℓ=2

dzℓ
2πizℓ(1− zℓ)

, (5.29)

where
αℓ = λ2/3xℓ, τℓ = λtℓ, βℓ = λ1/3hℓ (5.30)

for 1 ≤ ℓ ≤ m, and the function K̃n(β; z̃) and the notations are the same as in Proposition 2.3. Note n1 = 1
is fixed and z̃ = (z2, · · · , zm−1). We copy the formula below for convenience of the readers. Note that we
dropped the factor f1(−1)/f1(1) = 1 by (5.28).

K̃n(β; z̃)

= 2

m−1∏
ℓ=2

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1 ·
m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,L

du
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,L

du
(ℓ)
iℓ

2πi

)
n2∏

i2=1

∫
Γout
2,L

du
(2)
i2

2πi

m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,R

dv
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,R

dv
(ℓ)
iℓ

2πi

)
n2∏

i2=1

∫
Γout
2,R

dv
(2)
i2

2πi
·

m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)

· C(−1 ⊔ V (2); 1 ⊔ U (2)) ·
m−1∏
ℓ=2

C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)) · C(U (m);V (m)).

(5.31)

We will apply the steepest descent method to the formula (5.31) of K̃n(β; z̃) when λ → ∞. This will be
done by shrinking the contours

Γ⋆
ℓ,⋄ → λ−1/3Γ⋆

ℓ,⋄, 3 ≤ ℓ ≤ m, ⋄ ∈ {L,R}, ⋆ ∈ {in, out} (5.32)

and
Γout
2,⋄ → λ−1/3Γout

2,⋄ , ⋄ ∈ {L,R}. (5.33)

Recall that we initially require the contours Γin
ℓ,⋄ to be nested and outside of the points ±1. However, since

the only factor that might generate poles is C(−1 ⊔ V (2); 1 ⊔ U (2)) while u
(2)
i2

∈ Γout
2,L and v

(2)
i2

∈ Γout
2,R which

are already closer to the origin (see Figure 1 for an illustration), the deformation of the contours will not
encounter any poles.

We change variables accordingly

u
(ℓ)
iℓ

= λ−1/3ξ
(ℓ)
iℓ

, v
(ℓ)
iℓ

= λ−1/3η
(ℓ)
iℓ

(5.34)

where ξ
(ℓ)
iℓ

∈ Γ⋆
ℓ,L and η

(ℓ)
iℓ

∈ Γ⋆
ℓ,R for all 1 ≤ iℓ ≤ nℓ and 2 ≤ ℓ ≤ m. Note the simple identity

fℓ(w) = e−
1
3 (τℓ−τℓ−1)w

3+(αℓ−αℓ−1)w
2+(βℓ−βℓ−1)w = e−

1
3 (tℓ−tℓ−1)ζ

3+(xℓ−xℓ−1)ζ
2+(hℓ−hℓ−1)ζ := F̃ℓ(ζ), (5.35)
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when 2 ≤ ℓ ≤ m and w = λ−1/3ζ. Thus we obtain

K̃n(β; z̃)

= 2

m−1∏
ℓ=2

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1

m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,L

dξ
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,L

dξ
(ℓ)
iℓ

2πi

)
·

n2∏
i2=1

∫
Γout
ℓ,L

dξ
(2)
i2

2πi

m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,R

dη
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,R

dη
(ℓ)
iℓ

2πi

)
·

n2∏
i2=1

∫
Γout
ℓ,R

dη
(2)
i2

2πi

m∏
ℓ=2

nℓ∏
iℓ=1

F̃ℓ(ξ
(ℓ)
iℓ

)

F̃ℓ(η
(ℓ)
iℓ

)
· λ−n2/3C(−1 ⊔ V (2); 1 ⊔ U (2)) ·

m−1∏
ℓ=2

C(ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)) · C(ξ(m);η(m)).

(5.36)

We also note that

λ−n2/3C(−1 ⊔ V (2); 1 ⊔ U (2)) → −1

2
· C(η(2); ξ(2)) (5.37)

as λ → ∞. Thus, assuming the integrand is uniformly bounded, we obtain the large λ limit

lim
λ→∞

K̃n(β; z̃)

= −
m−1∏
ℓ=2

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1

m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,L

dξ
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,L

dξ
(ℓ)
iℓ

2πi

)
·

n2∏
i2=1

∫
Γout
ℓ,L

dξ
(2)
i2

2πi

m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,R

dη
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,R

dη
(ℓ)
iℓ

2πi

)
·

n2∏
i2=1

∫
Γout
ℓ,R

dη
(2)
i2

2πi

m∏
ℓ=2

nℓ∏
iℓ=1

F̃ℓ(ξ
(ℓ)
iℓ

)

F̃ℓ(η
(ℓ)
iℓ

)
· C(η(2); ξ(2)) ·

m−1∏
ℓ=2

C(ξ(ℓ) ⊔ η(ℓ+1);η(ℓ) ⊔ ξ(ℓ+1)) · C(ξ(m);η(m)).

(5.38)

Inserting it to (5.29) and comparing it with Proposition 3.1, we find

lim
λ→∞

T(β1, · · · , βm; (α1, τ1), · · · , (αm, τm)) = P

(
m⋂
ℓ=2

{
HKPZ(xℓ, tℓ) ≥ hℓ

})
. (5.39)

We thus obtain Proposition 5.5.
It remains to justify that we can take the large λ limit within the integral and summation. In fact, we can

obtain the following uniform bound for K̃n(β; z̃) due to the super-exponentially growing/decaying property
of the functions F̃ℓ, ∣∣∣K̃n(β; z̃)

∣∣∣ ≤ Cn2+···+nm

m−1∏
ℓ=2

(1 + |zℓ|)nℓ+1

|1− zℓ|nℓ+1−nℓ |zℓ|nℓ+1
·

m∏
ℓ=2

nnℓ

ℓ . (5.40)

The proof of the above bound is almost identical to the proof of Lemma 3.4 hence we omit the details. Using
this bound, we see that the dominated convergence theorem applies and we can take the limit within the
integral in (5.31).

6 Proof of Proposition 1.5

The first part of Proposition 1.5 follows from the definition of HUT in Definition 2.4, especially the equation
(2.27).
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For part (b), it is sufficient to show the two cases when (0, 0) ≺ (α, τ) and (α, τ) = (0, 0) by the symmetry
of the formula. When (0, 0) ≺ (α, τ), the property follows from Definition 2.4 and the identity (2.28). When
(α, τ) = (0, 0), it follows from part (a) and a direct verification.

Part (c) is a direct corollary of Lemma 2.10.
The proof of (d) requires some calculations. We first write down the formula of the joint tail probability

function of HUT
0 (α1, 0), · · · ,HUT(αk−1, 0) and HUT(αk+1, 0), · · · ,HUT

0 (αm, 0), where α1 < · · · < αk−1 < 0
and 0 < αk+1 < · · · < αm. Using Proposition 2.3 and Proposition 2.12, we have

P

 ⋂
1≤ℓ≤m
ℓ̸=k

{
HUT

0 (αℓ, 0) ≥ βℓ

} = (−1)m
∮
>1

· · ·
∮
>1

∑
nℓ≥1

2≤ℓ≤m

1

(n2! · · ·nm−1!)2
K̃′

n(β; z̃)

m−1∏
ℓ=2

dzℓ
2πizℓ(1− zℓ)

,

(6.1)

where z̃ = (z2, · · · , zm−1), and

K̃′
n(β; z̃)

= −e−2β1

m−1∏
ℓ=2

(1− zℓ)
nℓ(1− z−1

ℓ )nℓ+1 ·
m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,L

du
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,L

du
(ℓ)
iℓ

2πi

)
n2∏

i2=1

∫
Γout
2,L

du
(2)
i2

2πi

m∏
ℓ=3

nℓ∏
iℓ=1

(
1

1− zℓ−1

∫
Γin
ℓ,R

dv
(ℓ)
iℓ

2πi
− zℓ−1

1− zℓ−1

∫
Γout
ℓ,R

dv
(ℓ)
iℓ

2πi

)
n2∏

i2=1

∫
Γout
2,R

dv
(2)
i2

2πi
·

m∏
ℓ=2

nℓ∏
iℓ=1

fℓ(u
(ℓ)
iℓ

)

fℓ(v
(ℓ)
iℓ

)

· C(−1 ⊔ V (2); 1 ⊔ U (2)) ·
m−1∏
ℓ=2

C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)) · C(U (m);V (m))

·

 nk∑
ik=1

(u
(k)
ik

− v
(k)
ik

)−
nk+1∑

ik+1=1

(u
(k+1)
ik+1

− v
(k+1)
ik+1

)

 .

(6.2)

Here we set αk = βk = 0 for notation convention in the above formula. The contours are the same as in
Definition 2.2, also see Figure 1 for an illustration. The functions

fℓ(w) = (αℓ − αℓ−1)w
2 + (βℓ − βℓ−1)w, 2 ≤ ℓ ≤ m (6.3)

which are defined in (2.14) with the parameters τℓ = 0.
We need to simplify the formula first.

Lemma 6.1. The contribution of the integral in (6.2) is zero if any of the v
(ℓ)
iℓ

contours is chosen as Γin
ℓ,R.

Moreover, K̃′
n(β; z̃) = 0 unless n1 = · · · = nm = 1.

Proof of Lemma 6.1. The key observation is that for any ⋆ ∈ {in, out}∫
R+Γ⋆

ℓ,R

g(v
(ℓ)
iℓ

)e
−fℓ(v

(ℓ)
iℓ

) dv
(ℓ)
iℓ

2πi
→ 0 (6.4)

as R → +∞ as long as the g function is analytic to the right of R+Γ⋆
ℓ,R and it grows slower than e(1−ϵ)fℓ(v)

for some ϵ > 0 when Re(v) → ∞. Thus, if we choose some Γin
ℓ,R when we expand the integral in (6.2), and

assume that ℓ is the largest index such that Γin
ℓ,R is chosen, then we can shift the integral

∫
Γin
ℓ,R

to right by

+∞ and the integral vanishes. This proves the first half of the lemma.

For the second half, we prove it inductively. If n2 > 1, we deform all the v
(2)
i2

contours as in (6.4) hence

only the residues during the deformation survives. Moreover, the only residue comes from the factor v
(2)
i2

= 1
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for each i2. However, note the Cauchy determinant C(U (2) ⊔ V (3);V (2) ⊔ U (3)) which contains a factor

v
(2)
1 − v

(2)
2 = 0. Thus, the residue vanishes in this case and we proved the case when n2 > 1. Now we assume

n2 = · · · = nℓ−1 = 1 but nℓ > 1. Our earlier argument implies that we could deform all the v
(2)
1 , · · · , v(ℓ−1)

1

contours to infinity and only the residue v
(2)
1 = · · · = v

(ℓ−1)
1 = 1 survives. We similarly deform the v

(ℓ)
iℓ

contours to infinity as in (6.4) and only the residue at v
(ℓ)
iℓ

= v
(ℓ−1)
1 = 1 survives. The residue is zero due to

the Cauchy factor C(U (ℓ) ⊔ V (ℓ+1);V (ℓ) ⊔ U (ℓ+1)). This finishes the induction.

Applying Lemma 6.1, we only need to evaluate K̃′
n(β; z̃) when n1 = · · · = nm = 1 and all the v contours

are chosen as Σout
ℓ,R. In this case, by consider the zℓ integrals and letting zℓ contours to infinity, we find that

all the u contours can only be chosen as Σout
ℓ,L . Thus we obtain, after simplifying the notations,

P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{
HUT

0 (αℓ, 0) ≥ βℓ

} = (−1)m−1e−2β1

m∏
ℓ=2

∫
Γout
ℓ,L

duℓ

2πi

∫
Γout
ℓ,R

dvℓ
2πi

m∏
ℓ=2

fℓ(uℓ)

fℓ(vℓ)

det

[ 1
−1−1

1
−1−u2

1
v2−1

1
v2−u2

]
·
m−1∏
ℓ=2

det

[
1

uℓ−vℓ
1

uℓ−uℓ+1
1

vℓ+1−vℓ
1

vℓ+1−uℓ+1

]
· 1

um − vm
· (uk − vk − uk+1 + vk+1) .

(6.5)

By further deforming the contours Σout
ℓ,R to infinity and evaluating the residues at 1, we get

P

 ⋂
1≤ℓ≤m
ℓ̸=k

{
HUT

0 (αℓ, 0) ≥ βℓ

}

= (−1)m−1eα1−β1−αm−βm

m∏
ℓ=2

∫
Γout
ℓ,L

duℓ

2πi

[
m∏
ℓ=2

fℓ(uℓ)

]
·

 1

−1− u2
·

∏
2≤ℓ≤m−1

ℓ ̸=k

1

uℓ − uℓ+1
· 1

um − 1

 .

(6.6)

Now we change variables uℓ = −1 + ûℓ for 2 ≤ ℓ ≤ k and uℓ = 1 + ûℓ for ℓ = k + 1, · · · ,m. (6.6) is the
product of the following two terms

k∏
ℓ=2

∫
1+Γout

ℓ,L

∏k
ℓ=2 e

(αℓ−αℓ−1)û
2
ℓ+(βℓ−2αℓ−(βℓ−1−2αℓ−1))ûℓ

û2

∏k−1
ℓ=2 (ûℓ+1 − ûℓ)

= P

(
k−1⋂
ℓ=1

{B1(−2αℓ) ≥ βℓ − 2αℓ}

)
(6.7)

by (5.9), and

m∏
ℓ=k+1

∫
−1+Γout

ℓ,L

∏m
ℓ=k+1 e

(αℓ−αℓ−1)û
2
ℓ+(βℓ+2αℓ−(βℓ−1+2αℓ−1))ûℓ

(−ûm)
∏m−1

ℓ=k+1(ûℓ+1 − ûℓ)
= P

(
m⋂

ℓ=k+1

{B2(2αℓ) ≥ βℓ + 2αℓ}

)
(6.8)

by (5.10) and a shift of index, where B1 and B2 are two independent Brownian motions. Thus we obtain

P

 ⋂
1≤ℓ≤m
ℓ̸=k

{
HUT

0 (αℓ, 0) ≥ βℓ

} = P

 ⋂
1≤ℓ≤m
ℓ ̸=k

{Bts(2αℓ)− |2αℓ| ≥ βℓ}

 (6.9)

and we proved the last part of Proposition 1.5.
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